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I. OBJECTIVES 

Objective 1:  To create a niche model for Longnose Darter in Lee Creek based on existing data 
 

Objective 2: To map habitat in the Poteau River system and transfer the niche model from Lee 
Creek to produce a potential distribution map as a sampling design and search for Longnose 
Darter 
 

SUMMARY OF PROGRESS: 

Executive Summary 
  
In Oklahoma, the Longnose Darter (LND) is a state-endangered fish species that was presumed 
extirpated from much of its range in Oklahoma for almost 70 years. Efforts to translocate this 
species in the 1990s went unassessed and their current distribution in Oklahoma is largely 
unknown. My objectives were to create ecological niche models at two spatial scales to identify 
potentially suitable habitat for LND and to sample two streams thought to contain LND in an 
occupancy modeling framework to estimate detection probability. The program Maxent was used 
to estimate probability of habitat suitability throughout the historical range of LND using a 
presence-only approach. This model identified several streams in Oklahoma with high 
probability of habitat suitability that have not previously been targeted for sampling for LND. 
After selecting 32 sites in Lee Creek and Blackfork Creek in Oklahoma, darter species were 
sampled with a backpack electrofisher in the summer of 2017 and spring 2018. No LND were 
found during the sampling in Blackfork Creek where LND were translocated in the 1990s. In Lee 
Creek, Longnose Darters were still extant, but had the lowest detection probability (5-10%) 
among co-occurring darter species depending on season. Compared to summer, the detection 
probability for LND in spring was not only higher, but more LND were found and at more sites. 
Presumably, the increased catches and detection of LND in spring was related to spawning 
activity, when the darters are shallower and more concentrated. Future monitoring for this state-
endangered species can take advantage of this information and should be conducted in a way that 
considers imperfect detection. The range-wide ecological niche model results can be used to 
target new streams in Oklahoma for sampling for LND and the results from Lee Creek suggest 
that these surveys would maximize the potential for documenting this species if sampling were 
conducted in the spring when detection rates are higher. 
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A. METHODS: 
 

Objective 1:  To create a niche model for Longnose Darter in Lee Creek based on existing data. 
 
See attached Appendix I. 
 
Objective 2: To map habitat in the Poteau River system and transfer the niche model from Lee 
Creek to produce a potential distribution map as a sampling design and search for Longnose 
Darter. 
 
See attached Appendix I. 
 
B. RESULTS: 

 
Objective 1:  To create a niche model for Longnose Darter in Lee Creek based on existing data 
 
See attached Appendix I. 
 
Objective 2: To map habitat in the Poteau River system and transfer the niche model from Lee 
Creek to produce a potential distribution map as a sampling design and search for Longnose 
Darter. 
 
See attached Appendix I. 
 
II. RECOMMENDATIONS 

We recommend sampling suitable stretches of the upper Poteau River, particularly where 
Oklahoma Water Resources Board reported capturing 1 Longnose Darter in 2015, because this 
would mean this population is not extirpated as previously thought. Additionally, sampling 
should occur in the upper portions of the Kiamichi River, which would represent a range 
extension for the species in Oklahoma. Other streams within the range of Longnose Darter in 
Oklahoma that should be sampled where models predicted suitable habitat include Sans Bois 
Creek, Sallisaw Creek, and the Illinois River. Longnose Darter have a very low probability of 
detection, so multiple (≥10) sampling events may be necessary to verify the absence of the 
species. Sampling during spring had higher probability of detection than in summer. 

III. SIGNIFICANT DEVIATIONS 

None. 

IV. EQUIPMENT 

None. 
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Major Field: NATURAL RESOURCE ECOLOGY AND MANAGEMENT 
 
Abstract: North America has more than 700 species of freshwater fish that are considered 
imperiled and at least 27 species of North American fish have gone extinct within the last 
century. In Oklahoma, the Longnose Darter (LND) is a state-endangered fish species that 
was presumed extirpated from much of its range in Oklahoma for almost 70 years. 
Efforts to translocate this species in the 1990s went unassessed and their current 
distribution in Oklahoma is largely unknown. My objectives were to create ecological 
niche models at two spatial scales to identify potentially suitable habitat for LND and to 
sample two streams thought to contain LND in an occupancy modeling framework to 
estimate detection probability. The program Maxent was used to estimate probability of 
habitat suitability throughout the historical range of LND using a presence-only 
approach. This model identified several streams in Oklahoma with high probability of 
habitat suitability that have not previously been targeted for sampling for LND. After 
selecting 32 sites in Lee Creek and Blackfork Creek in Oklahoma, darter species were 
sampled with a backpack electrofisher in the summer of 2017 and spring 2018. No LND 
were found during the sampling in Blackfork Creek where LND were translocated in the 
1990s. In Lee Creek, Longnose Darters were still extant, but had the lowest detection 
probability (5-10%) among co-occurring darter species depending on season. Compared 
to summer, the detection probability for LND in spring was not only higher, but more 
LND were found and at more sites. Presumably, the increased catches and detection of 
LND in spring was related to spawning activity, when the darters are shallower and more 
concentrated. Future monitoring for this state-endangered species can take advantage of 
this information and should be conducted in a way that considers imperfect detection. 
The range-wide ecological niche model results can be used to target new streams in 
Oklahoma for sampling for LND and the results from Lee Creek suggest that these 
surveys would maximize the potential for documenting this species if sampling were 
conducted in the spring when detection rates are higher.  
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CHAPTER I 
 

 

MULTI-SCALE ENVIRONMENTAL NICHE MODELING TO ESTIMATE HABITAT 

SUITABILITY OF LONGNOSE DARTER (PERCINA NASUTA) IN OKLAHOMA 

Introduction 

Anthropogenic influences on freshwater aquatic ecosystems have led to the 

decline of many freshwater fish species (Allan and Flecker 1993; Ricciardi and 

Rasmussen 1999). In North America alone, more than 700 species of freshwater fish are 

considered imperiled (Jelks et al. 2008) and at least 27 species of North American fish 

have gone extinct within the last century (Miller et al. 1989). Threats to freshwater 

biodiversity include overexploitation, anthropogenic habitat degradation and flow 

modification, and competition with invasive or introduced species (Dudgeon et al. 2006; 

Helfman 2007). Freshwater habitat degradation through flow modification is not only one 

of the greatest threats to aquatic biodiversity, but also one of the most widespread 

(Nilsson et al. 2005), sometimes leading populations to local extinction (Wilcox and 

Murphy 1985). 

State and federal agencies are tasked with conserving rare, threatened, and 

endangered species (McMullin and Pert 2010) and documenting their trends in 

abundance and range extent are critical for this task. Robust surveys to document species 

presence are important because there have been several cases of species being 

rediscovered after many years of assumed extirpation or extinction, even in areas with 
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highly modified environments (Hammer et al. 2015). For example, the Black Kokanee 

(Oncorhynchus kawamurae), a deepwater trout native to Japan, was recently rediscovered 

within its historic range after 70 years of assumed extinction (Nakabo et al. 2011). Also, 

the Robust Redhorse (Moxostoma robustum) was rediscovered within its historic range 

after more than 120 years without a sighting (Hendricks 1998). After its rediscovery in 

1991, several unsuccessful surveys for Robust Redhorse were conducted within the 

historic range in an attempt to find additional individuals (Nichols 2003). A considerable 

amount of effort is often dedicated towards finding rare fish species and a more refined 

sampling approach may reduce the costs of these surveys and time spent sampling 

(Guisan et al. 2006).  

In Oklahoma, many fish species have suffered range-loss and could become 

extinct, including Arkansas River Shiner (Notropis girardi), Neosho Madtom (Noturus 

placidus), Leopard Darter (Percina pantherina), and Longnose Darter (LND; Percina 

nasuta). The first three species are currently listed as federally endangered and as such, 

federal agencies are tasked with monitoring these species (McMullin and Pert 2010). 

Currently, the Longnose Darter (Bailey 1941) is one of 404 species from the Southeastern 

United States petitioned for listing under the Endangered Species Act (Center for 

Biological Conservation 2010). However, little current information on LNDs exists to 

assist in this determination. In Oklahoma, LNDs are designated as state-endangered, a 

Tier 1 species of concern (ODWC 2016), and considered “threatened” throughout its 

entire range (Jelks et al. 2008). One of Oklahoma’s rarest fish species (Robison 1992; 

Miller and Robison 2004), the LND likely suffered population declines after the 

completion of Wister Dam in 1949. For over 60 years attempts to capture it in the Poteau 
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River system (PRS) failed (Cross and Moore 1952; Lindsey et al. 1983; Wagner et al. 

1985), suggesting it had been extirpated from this system. However, in 2015 a LND was 

collected from the Poteau River upstream of Wister Lake (OWRB 2015). This record 

highlights how little we know about Longnose Darters’ detectability and their distribution 

in Oklahoma. Longnose Darters are benthic insectivores that inhabit gravel riffles and 

shallow pools of upland streams within the Arkansas River drainage of Arkansas, 

Missouri, and Oklahoma (Miller and Robison 2004). Historically, LND were only known 

to definitively occur in Oklahoma in two river systems, Lee Creek and the PRS (multiple 

occurrences in the Poteau River and 1 occurrence in Brazil Creek), and only the 

population in Lee Creek is known to consistently persist (Burns & McDonnell 

Engineering Company 1990; Gatlin and Long 2011).  

A potentially viable population of translocated LND may exist in Blackfork 

Creek, a tributary of the Poteau River. When dam construction on Lee Creek was 

proposed by the city of Fort Smith, Arkansas in 1989, concern grew that LND might be 

extirpated from Lee Creek. Translocation efforts in 1991-92 resulted in ~164 individuals 

moved from Lee Creek into three locations of Blackfork Creek to create a refuge 

population (Burns & McDonnell Engineering Company 1989) (Figure 1). Surveys 

conducted prior to translocation failed to collect any LND in Blackfork Creek (Burns & 

McDonnell Engineering Company 1990), although this stream is within the historic range 

of the species (Cross and Moore 1952). Blackfork Creek has not been surveyed for LND 

since the translocation in 1992 and the success of these efforts is unknown.  

Ecological niche models (ENM) have been applied to a wide range of species and 

geographic areas (Elith and Leathwick 2009). These types of models have been used to 
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prioritize conservation areas (Urbina-Cardona and Flores-Villela 2010) and to identify 

new populations of endemic habitat specialist fishes (Rhoden et al. 2017). Their use has 

helped the search for many species of conservation concern by identifying areas with 

suitable habitat, but these techniques have largely been applied to plants and terrestrial 

animals (Fois et al. 2018). Several studies that have used ENMs on aquatic species have 

successfully identified previously undiscovered populations (Rhoden et al. 2017) and 

possible protection areas with the highest species richness (Castillo-Torres et al. 2017). 

Aquatic ecosystems are one of the most impacted ecosystems by climate change and 

other anthropogenic influences such as flow modification and habitat degradation 

(Dudgeon et al. 2006). Multi-scale ecological niche models could aid management 

agencies in their task of monitoring and conserving areas for species of conservation 

concern.  

Ecological niche models that rely on presence-only information, such as Maxent, 

provide a mechanism to estimate potential locations where LND may occur, especially at 

sites that have either not been sampled or not sampled extensively. Maxent uses species 

occurrence information and environmental predictors to infer habitat suitability in areas 

without occurrence data (Peterson et al. 2002, 2011). At a broad, river-segment scale, 

large stream segments from across its historical range that have potentially suitable 

habitat for LND can be identified. But, such a large scale is difficult to use later to select 

sampling locations to search for rare species. A finer-scale model that incorporates local 

environmental variables is better suited to identify areas to survey within the stream 

segments predicted suitable with the range-wide model. Thus the objectives of this study 

are to aid future sampling efforts where the goal is to detect LND by using ecological 
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niche models at two different spatial scales to (1) estimate habitat suitability in streams 

throughout the historical range of Longnose Darter and (2) estimate habitat suitability at 

the stream reach scale in Lee Creek and Blackfork Creek. 

 

Methods 

Study Area 

 The historical range of Longnose Darter extends across three states and four EPA 

level III ecoregions. The Ozark Highlands is partly covered by oak-hickory forest and is 

underlain by karst and dolomite features (Woods et al. 2005). The geology of the Boston 

Mountains ecoregion is characterized Pennsylvanian-age sandstone and shale. The 

Arkansas Valley ecoregion is a synclinal and alluvial valley that lies between the Boston 

Mountains and Ouachita Mountains ecoregion; it is also characterized by Pennsylvanian-

age sandstone and shale geology. The Ouachita Mountains are structurally different from 

the Boston Mountains and are lithologically distinct from the Ozark Highlands. This 

ecoregion is largely forested and is comprised of oak, hickory, and pine trees. The 

streams within these four ecoregions flow primarily into the Arkansas River and White 

River drainages.  

 The Poteau River flows within the Arkansas Valley ecoregion of Arkansas and 

Oklahoma, originating in Arkansas and flowing west into Oklahoma where it turns 

abruptly north towards its confluence with the Arkansas River (Figure 1). Constructed in 

1949, Wister Dam impounds the Poteau River where it meets Fourche Maline Creek. 

Upstream from Wister Lake, the Poteau River and its tributaries are characterized by 

boulder-gravel substrate typical of this region (Cross and Moore 1952; Lindsey et al. 
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1983). Downstream of Wister Lake, the Poteau River and its tributaries transition into 

more turbid, lowland rivers characterized by muddy riverbeds and occasional shale 

outcroppings. Historically, 89 species of fish inhabited the Poteau River system (Cross 

and Moore 1952), but more recent surveys have shown a declining abundance of a 

number of fish species (Lindsey et al. 1983). A general survey of the Poteau River failed 

to capture LND in 1974 (Lindsey et al. 1983) and until recently LND were assumed 

extirpated (Wagner et al. 1985, OWRB 2015). However, because of the unassessed 

translocations into Blackfork Creek, a LND population may persist in this tributary of the 

Poteau River. 

 Lee Creek originates within the Boston Mountains ecoregion of Arkansas and 

flows into Oklahoma before turning back east towards its confluence with the Arkansas 

River (Figure 1). Lee Creek is designated as one of Oklahoma’s six “scenic rivers” 

(OSRC 2016) and historically had as many as 78 fish species (Funk 1979; FERC 1987). 

Longnose Darters were first documented in Lee Creek in 1886 (Jordan and Gilbert 1886) 

and this stream hosts the last known persistent populations of Longnose Darters in 

Oklahoma (Wagner et al. 1985; Gatlin and Long 2011).  

 

Modeling 

 Ecological niche models created with the program Maxent were used to identify 

potentially suitable habitat for LND throughout its range particularly in Oklahoma, 

including Lee Creek and the PRS. Maxent is a machine-learning algorithm that uses 

presence-only occurrence data to produce a map of locations with probability of habitat 

suitability (Phillips et al. 2006; Elith et al. 2011). Habitat suitability probabilities can then 
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be divided into strata of suitability categories, which can be used to guide future sampling 

efforts by natural resource agencies (Guisan et al. 2006). Rare species in particular are 

detected imperfectly when sampling, leading to difficulties in making inferences about 

their populations (MacKenzie et al. 2005). Although imperfect detection can bias 

inferences and predictions in a presence-background approach like Maxent, the resulting 

niche models can be used to prioritize areas for future sampling by ranking sites in terms 

of habitat suitability, but not to estimate actual probabilities of site occupancy (Lahoz-

Monfort et al. 2014). To model Longnose Darter habitat suitability throughout their entire 

range while also incorporating more local habitat characteristics, models were created at 

two scales in this study: a stream segment, range-wide scale and at a more local, stream 

reach scale. The range-wide model identified potentially suitable stream segments within 

the species range, as well as identified suitable areas for finer-scale modeling. I used Lee 

Creek and Blackfork Creek for an assessment of habitat suitability in streams where this 

species has been recently documented or translocated. Longnose Darters were long 

presumed extirpated within their historic range in the Poteau River (Cross and Moore 

1952; Lindsey et al. 1983; Burns & McDonnell Engineering Company 1990), but are 

presumed to still occur in Lee Creek (Gatlin and Long 2011) and could likely occur in 

Blackfork Creek (Burns & McDonnell Engineering Company 1990). It is possible that 

remnant populations of Longnose Darters exist in streams that have not been previously 

sampled for this species; determining probability of habitat suitability throughout their 

range would benefit natural resource management agencies in their search for 

undiscovered populations. 
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Stream Segment Model — The range-wide model was completed prior to the stream reach 

scale modeling, and was conducted in a team setting that included myself, faculty, and 

graduate students. This model was based on a presence-only LND occurrence dataset 

from online databases (e.g., BISON and Vertnet; Table 1) and coarse-scale environmental 

variables at the stream segment resolution. When historical records lacked precise GPS 

coordinates, the program Geolocate was used to assign coordinates based upon textual 

locality descriptions (Rios and Bart 2010). Occurrence records were then associated with 

stream segments (flowlines) in the Arkansas River basin drainage (USGS hydrologic 

region 11) of the National Hydrography Dataset (NHD) that intersect with EPA level III 

ecoregions in Missouri, Arkansas, and Oklahoma, encompassing the range of LND (i.e., 

Ouachita Mountains, EPA level III ecoregion 36; Arkansas Valley, 37; Boston 

Mountains, 38; and Ozark Highlands, 39). 

After joining occurrence records to the selected NHDPlus flowlines in ArcMap 

(ESRI 10.3.1), duplicate records were removed and a single occurrence was retained for 

that segment. Of the ecoregions selected, those with the majority of LND records were 

selected as the model training area. The remaining ecoregions represented the model 

testing area to evaluate fit and performance. Eleven coarse-scale hydrologic and 

geological habitat covariates that quantify the natural abiotic and streamflow 

characteristics of the study area were included in the model (Albanese et al. 2014, Taylor 

et al. 2018; Table 2). Briefly, depth-to-bedrock is a metric quantifying the how deep the 

bedrock is under the soil, soil permeability is a measure of the ease with which air and 

water move through the soil, and rock fragment volume is a measure of particles >2 mm 
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in the soil. Within the NHDPlus dataset, variables were selected that represent both the 

climate of the region (e.g, annual precipitation and maximum elevation) and streamflow 

characteristics (e.g., unimpacted mean annual discharge and slope). Total drainage area 

was removed because it had a Pearson’s correlation coefficient of |r| >0.7 with 

unimpacted discharge (Table 3). After an initial model run, predictor variables that 

contributed <2% to model accuracy gain were removed to avoid model overfitting. I 

selected the logistic output option in the Maxent algorithm because it reports values 

ranging from 0.0-1.0, which can be used to rank sites according to habitat suitability 

(Elith et al. 2011). When producing the logistic output, Maxent assumes and sets the 

prevalence (τ) of a species at typical presence locations at 0.5 by default. Little prior data 

exists for LND prevalence so this default value was used. The number of background 

points was increased to 100,000. The jackknife option for variable importance was 

selected to determine the degree to which each environmental variable contributed to 

predicted habitat suitability. The minimum training presence (MTP) value was applied as 

a threshold to the logistic output values, where the lowest suitability value associated 

with a presence location became the cutoff for determining suitable and non-suitable 

stream segments. Values greater than the MTP threshold were separated into four 

categories of increasing probability of habitat suitability (Table 4). All other settings were 

left as default in the Maxent software. The resulting model estimates environmental 

habitat suitability for all stream segments in the study area, many of which have not been 

sampled for Longnose Darters in the past. 
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Stream Reach Model — Fine-scale habitat and LND occurrence data on Lee Creek exists 

from previous studies (Burns & McDonnell Engineering Company 1989; Gatlin 2013). I 

used this data to model Lee Creek at the reach scale and projected estimated probability 

of habitat suitability into Blackfork Creek, where LND have been translocated. The LND 

occurrence records available for this scale represent sites from across a variety of habitats 

along the entirety of Lee Creek in Oklahoma and include general substrate composition 

and channel unit information. Burns & McDonnell Engineering Company (1989) 

specifically targeted LNDs in their sampling of Lee Creek during FERC licensing of Lee 

Creek Dam. Their sampling design targeted riffles and raceway areas, including habitat 

descriptions for each site where LNDs were captured. Gatlin (2013) surveyed channel 

units in a probabilistic fashion for fish communities and recorded channel unit and 

substrate information, including at sites where LNDs were encountered. These two 

surveys within Lee Creek were sampled in relation to the available channel units, 

reducing sampling bias often found with museum records (Phillips et al. 2009). However, 

these data are also biased towards sampling in shallow water. The stream reach niche 

model was created using stream reach polygons (riffle-to-riffle) in the samples-with-data 

(SWD) format in Maxent. Of the predictor variables summarizing reach channel unit and 

substrate type composition, % Pool, % Bedrock, and % Glide were selected because they 

are not highly correlated (Table 5). The logistic output and jackknife options in Maxent 

were used as in the range-wide model. A 10-fold model cross-validation was applied to 

this model and provided mean values and error estimates from the 10 model replicates. In 

cross-validation, samples are evenly divided into folds, and during each of the specified 

number runs, each fold is left out of the model once as a testing subset (Merow et al. 
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2013). The model was trained and tested on Lee Creek occurrence records and projected 

into Blackfork Creek. 

The environmental variables to be used in this ENM (i.e., substrate composition, 

channel unit composition, and reach area) were selected based on their presumed 

biological significance for fluvial benthic specialist species at a local scale (e.g., 

Tangerine Darter Percina aurantiaca and Goldline Darter Percina aurolineata; Leftwich 

et al. 1997; Albanese et al. 2014). Substrate and channel unit classifications for Lee 

Creek from Gatlin (2013) were used in this analysis and applied to Blackfork Creek. 

Gatlin (2013) visually categorized channel units into four categories (i.e., riffle, run, pool, 

and glide; Arend 1999) during side-scan sonar surveys. To account for changes in river 

structure and channel unit location in the time since the surveys were conducted, 

adjustments were made to channel unit boundaries while viewing Lee Creek via Google 

Earth imagery; this procedure assumes no changes in substrate composition and no field 

validation took place. To define the stream reaches in Lee Creek, riffle-to-riffle channel 

unit polygons were merged together to create reaches (i.e., any given reach only contains 

one riffle). The side-scan sonar surveys from Gatlin (2013) were also used to classify 

substrate composition (i.e., bedrock, fine, rocky, and boulder). The four substrate types 

were consolidated into three categories. The rocky and boulder categories were merged 

into one rocky-boulder category because he reported low accuracy in differentiating these 

two types. I calculated the proportion of each reach comprised of each substrate type and 

the resulting polygons were used in the stream reach scale ENM. 
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Habitat Mapping – To map habitat throughout Blackfork Creek to match that identified 

in Lee Creek, I followed procedures employed by Gatlin (2013), using a Humminbird 

998c SI side-scan unit, in concordance with methods outlined by Kaeser and Litts (2010) 

to survey selected river segments identified as potentially suitable by the range-wide 

niche model. Because it was not feasible to completely scan Blackfork Creek, a protocol 

for side-scan sonar surveys was developed to limit sonar work to suitable areas from the 

range-wide ENM. To represent the different suitability categories (Table 4), side scan 

sonar surveys were conducted in Blackfork Creek in a disproportionate stratified 

mapping approach (Kalton and Anderson 1986). In this approach, the number of samples 

(sites per strata) is not distributed by strata size, but by suitability. Probability of habitat 

suitability was separated into five categories of increasing suitability and the amount 

scanned in each suitability category depended on the length of stream segment available. 

A 5 km threshold was selected where segments <5 km in a suitability category were 

scanned in its entirety. For areas >5 km, up to 25% of the stream segments in that 

category were scanned (Table 6).  

After the side-scan sonar surveys were conducted, the geo-referenced mosaic of 

side-scan images were processed in SonarTRX Pro and exported to ArcMap. I manually 

delineated underwater substrate types into polygon shapeflies in ArcMap 10.3.1, as 

outlined by Kaeser and Litts (2010), using field notes taken concurrently with the sonar 

surveys. Substrates were categorized into three coarse types: sand, rocky-boulder, and 

bedrock (Table 7). Geomorphic channel units (i.e., riffle, run, pool, and glide) were 

visually determined using methods outlined by Arend (1999).  
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Results	
 
Stream Segment Model - The Maxent model performed well in the range-wide model. 

High area-under-the-curve (AUC) values for testing (0.92) and training (0.98) subsets 

indicated the model accurately predicted occurrences from random background points 

(Table 8). The MTP testing omission error rate, or false negative rate, was slightly 

elevated at 0.23. Of the 63 spatially unique occurrence records, 50 were used for training 

the model and 13 for testing. Using the minimum training presence threshold (0.09), all 

12 stream segments with occurrence records in the Arkansas Valley and Ouachita 

Mountains were predicted present, although they occurred in stream segments of varying 

suitability (Figure 2). Of the 55,831 stream segments included in the range-wide model, 

95% were below the MTP and classified as not suitable for LND (Table 9; Figure 3). The 

2,763 stream segments with habitat suitability above the MTP are distributed between the 

other suitability categories and represent 3,820 km of streams. 

Unimpacted mean annual discharge was the highest contributing variable to the 

range-wide model (Table 10; Figure 4). Depth to bedrock contributed the second highest 

amount of each of the variables with a percent contribution of 8.5%. Maximum elevation 

contributed 6.9% to the model gain. The mean monthly temperature contributed 6.5%, 

lithologic type contributed 5.2%, and annual precipitation contributed 4.5% to the model. 

The range-wide model predicted several streams in Oklahoma to have high probability of 

habitat suitability that do not have LND occurrences. A 10-km threshold of suitable 

habitat was used to highlight a number of streams with “large” amounts of predicted 

habitat suitability (Table 11; Figure 5).  
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Habitat Mapping – In total, 21.7 km of Blackfork Creek was scanned using side-scan 

sonar. The areas surveyed on Blackfork Creek were comprised mostly of run channel 

units and rocky-boulder substrates with some exposed bedrock (Table 12). This contrasts 

with Lee Creek, which was comprised mostly of pool channel units and almost entirely 

rocky-boulder substrates. 

Stream Reach Model — The Maxent model performed well at the stream reach scale in 

Lee Creek, as the training and testing area-under-the-curve (AUC) values were high 

(>0.75) (Table 8; Figure 6). Of the 17 spatially unique occurrence records used in the 

model, the mean number of records used to train the model was 15.3 and the mean to test 

the model was 1.7. The MTP threshold from the logistic output from the 10-fold cross 

validation was 0.18. The mean MTP omission was 0%, while the mean MTP test 

omission rate was 10%. The jackknife measure of variable importance showed reach area 

to be the highest contributing variable in each of the model permutations with a percent 

contribution of 85.4% (Table 13; Figure 7). Percent pool composition contributed the 

second highest amount at 14.4%. Percent substrate composition contributed very little to 

the model. 

Discussion 

The stream segment scale, range-wide ENM helped identify areas within the 

known range of LND that may harbor potentially suitable habitat. Specifically, in 

Oklahoma the model highlighted several streams that have not been sampled for 

Longnose Darter (e.g., San Bois Creek and Sallisaw Creek). Also, at this scale, both of 

the streams of interest, Lee Creek and Blackfork Creek, are areas of high estimated 

habitat suitability. This offers support to the idea that a population of reintroduced LND 
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plausibly exists in a tributary of the Poteau River system after the translocation efforts in 

1991-92.  

The highest contributing variable in the stream segment ENM was unimpacted 

mean annual discharge, which is not the standard metric of measuring stream discharge. 

Unimpacted discharge is a back-calculated metric of stream discharge under conditions 

without impoundments that is included in the NHDPlus dataset. The standard metric of 

stream flows (i.e., impacted) was not used because I sought to model the broadest 

representation LNDs habitat suitability throughout its historical range. Also, because the 

occurrence records used in this model range from 1939–2014 (Table 2), impacted 

discharge may not have accurately represented the flow characteristics when these 

individuals were sampled. Because the objective of this model was to aid in the detection 

of this species, using unimpacted flows and occurrence records from both dammed and 

undammed periods results in a model that provides a liberal estimate of LND habitat 

suitability.  

The stream reach scale ENM further differentiated suitable stream reaches in Lee 

Creek and Blackfork Creek by incorporating local habitat characteristics. Stream 

segments in these systems vary widely in size and any future sampling performed at the 

reach scale will allow more thorough sampling of the selected sites. By modeling at this 

finer scale, fewer occurrences records could be assigned specific stream reach locations. 

The 17 LND occurrence records that could be assigned to specific stream reaches were 

helpful in estimating suitable habitat at the reach scale in Lee Creek and by projecting 

this model into the portions of Blackfork Creek that were mapped with side-scan sonar. 
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A shortcoming of presence-only modeling is that without the use of absence data, 

we only have information about locations where a species was detected. Because these 

models do not have information of species frequency of occurrence, they provide relative 

indices of habitat suitability (Elith et al. 2006). In fact, presence-only ENMs might only 

be modeling where a species is more likely to be detected (Lahoz-Monfort et al. 2014) 

and researchers must decide if this is useful. Given the objectives of these ENMs were to 

aid future sampling efforts that might seek to detect this species in novel locations, 

estimating sites with high probability of habitat suitability is still meaningful information. 

If locations where this species is more easily detected are also areas of suitable habitat, 

the results of the stream segment ENM can be used by fisheries management agencies 

interesting in detecting LND. 

To highlight how difficult LND can be to detect LND, the Oklahoma Water 

Resources Board captured a Longnose Darter in 2015 during routine sampling on the 

Poteau River upstream of Wister Lake, just west of the Arkansas border (OKRM-1023). 

This specimen was the first documented LND occurrence record in the PRS since Wister 

Lake was built in 1949. Like the Black Kokanee and the Robust Redhorse (Hendricks 

1998, Nakabo et al. 2011), the Longnose Darter has been rediscovered in a portion of its 

native range after decades of believed extirpation. The range-wide ENM predicted habitat 

suitability for the stream segment the LND was captured in is 0.42. After being found in 

the PRS while presumed extirpated, Longnose Darter populations could plausibly exist in 

other streams in Oklahoma that have never been targeted specifically for LND sampling. 

When using occurrence records collected from other databases we rely on the 

correct species identification. If misidentifications are made or a species known 
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distribution is updated, many times past occurrence records or museum inventory data are 

not updated very well with respect to taxonomy. Robison (1992) discusses LND 

occurrences from the Spring River in Missouri that were determined to be Slenderhead 

Darter. This report to the US Forest Service is not widely accessible and some databases 

still list a LND occurrence record in the Spring River.  

Similarly, a record of LND occurrence in the Kiamichi River of Oklahoma was 

determined to be a Slenderhead Darter in a genetic analysis (Robison et al. 2014), but this 

record has not been updated in online databases. There are a total of three occurrence 

records of LNDs in the Kiamichi River and a disjunct population may occur here (Holley 

and Long 2018). As Fourche Maline Creek is a tributary of the Poteau River, it may be 

possible that a remnant population of LNDs persists there after Wister Lake was built in 

1949. The other four streams (i.e., Little Lee Creek, Coal Creek, Sans Bois Creek, and 

Sallisaw Creek) are outside of the PRS and have not been sampled specifically for 

Longnose Darters.  

Both the stream segment and reach scale ENM identify suitable areas that support 

what is known about LNDs habitat preferences. Considering the results of both modeling 

scales, moderately large streams with abundant and large pool habitats appear to be 

broadly suitable. Longnose Darters have frequently been captured in low abundances 

across a broad range of local habitat types (Burns & McDonnell Engineering Company 

1989; Gatlin and Long 2011), from shallow, swift-flowing riffle habitats to deep (>2m) 

low-flow pools. Wagner et al. (1985) reported seining LND from a 1.5m deep pool. This 

range in habitat documented by the occurrence records may be because of seasonal 

changes in habitat use, which has been long suspected (Thompson 1977, Robison 1992). 
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It appears that there are two different habitat types used by LND throughout the year. In 

the spring, spawning LND move into riffle habitats near swift runs up to three feet deep 

(Robison 1992). During the non-spawning season LNDs have been found in deeper 

quieter pool regions. This behavior, coupled with limited occurrences records, could 

mean that while rarely encountered they are a habitat generalist within stream reaches 

they occupy.  

Little is known about the ecology and life history of the Longnose Darter. In 

1975, the Fishes of Missouri field guide stated, “nothing is known about the biology of 

this fish” (Pflieger et al. 1975). Since then, more information about the life history of 

LND has been discovered (Thompson 1977, Robison and Buchanan 1988), but relatively 

little is still known about this species. It has been speculated that habitat fragmentation 

and degradation from the construction of dams has contributed to LNDs decline in 

distribution in Oklahoma (Wagner et al. 1985). However, several valid reports of 

Longnose Darter from Lake Wappapello, Missouri and Lake Nimrod, Arkansas suggest 

that this species may tolerate reservoir environments at least for short periods of time 

(Robison 1992). The research presented here will hopefully add some insights to what we 

know about this rare species and will aid future management efforts to monitor their 

status. 
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CHAPTER II 
 

 

DETECTION PROBABILITIES OF LONGNOSE DARTER (PERCINA NASUTA) IN 
RELATION TO OTHER DARTERS IN LEE CREEK AND BLACKFORK CREEK OF 

OKLAHOMA  

 

Introduction 

The Longnose Darter (Bailey 1941) is a species native to upland streams in the 

Arkansas River drainage of Arkansas, Missouri, and Oklahoma (Miller and Robison 

2004). It is a benthic insectivore that inhabits swift gravel riffles and raceway areas 

during spawning season and moves into deeper pools later in the year (Thompson 1977; 

Robison 1992). Longnose Darters (LND; Percina nasuta) are listed as a state-

endangered, tier I species of conservation concern in Oklahoma (ODWC 2016) and are 

considered “threatened” throughout its entire range (Jelks et al. 2008). Currently, LND is 

one of 404 species from the southeastern United States petitioned for listing under the 

Endangered Species Act (Center for Biological Conservation 2010). However, little 

current information on LNDs exists to assist in this determination. 

Historically, Longnose Darters were only known to definitively occur in 

Oklahoma in two river systems, Lee Creek and the Poteau River system (multiple 

occurrences in the Poteau River and 1 occurrence in Brazil Creek). One of Oklahoma’s 

rarest fish species (Robison 1992; Miller and Robison 2004), the LND likely suffered
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population declines after the completion of Wister Dam in 1949. Currently, only the 

population in Lee Creek is known to consistently persist (Burns & McDonnell 

Engineering Company 1990; Gatlin and Long 2011). This species was thought extirpated 

from much of its range in Oklahoma because for 68 years not a single individual was 

reported from the Poteau River system (PRS) (Cross and Moore 1952; Lindsey et al. 

1983; Wagner et al. 1985). However, in 2015 a LND was collected from the Poteau River 

upstream of Wister Lake (OWRB 2015). This record highlights how little we know about 

Longnose Darters’ detectability when sampling. Our ability to detect this species hinders 

our ability to properly document their distribution. 

A potentially viable population of translocated LND may exist in Blackfork 

Creek, a tributary of the Poteau River. When dam construction on Lee Creek was 

proposed by the city of Fort Smith, Arkansas in 1989, concern grew that LNDs might be 

extirpated from Lee Creek. Translocation efforts in 1991-92 resulted in ~164 individuals 

moved from Lee Creek into three locations of Blackfork Creek to create a refuge 

population (Burns & McDonnell Engineering Company 1989) (Figure 1). Although 

surveys conducted prior to translocation failed to collect any LND in Blackfork Creek 

(Burns & McDonnell Engineering Company 1990), it is within the historic range of the 

species (Cross and Moore 1952). Blackfork Creek has not been surveyed for LND since 

the translocations in 1991-92 and the success of these efforts is unknown. Surveying 

Blackfork Creek in a framework where detection probability can be estimated would shed 

some light onto this unassessed population. 

Imperfect species detection is an important consideration for species of 

conservation concern (Kéry and Schmidt 2008). The dynamic nature of stream 
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environments further complicates the issues of species detection (Poff and Zimmerman 

2010). Occupancy modeling is a technique that separates the ecological process of 

species occurrence from the detection process (MacKenzie et al. 2002), allowing the 

estimation of detection probability under different environmental sampling conditions. 

Detection probability can not only vary by species, but also by habitat and sampling 

conditions (Bailey et al. 2004; Mollenhauer et al. 2018). This is why it is important to 

sample under a variety of environmental conditions to establish species-environment 

relationships (Gwinn et al. 2016). When tasked with monitoring rare species, it is 

important that we are informed about heterogeneity in detection (MacKenzie et al. 2004b, 

2005). For example, if the objective is to conduct targeted sampling surveys for a rare 

species, the study design can be adjusted to account for this difficulty (e.g., more sites, 

less surveys) (MacKenzie and Royle 2005). However, if the detection probability of a 

species is low, more surveys is the optimal choice. This creates an interesting challenge if 

a species is both rare and difficult to detect when sampling. 

Lee Creek is thought to host the last robust population of LND in Oklahoma 

(Wagner et al. 1985; Gatlin and Long 2011). Since no post-stocking surveys were 

conducted after translocating LNDs into Blackfork Creek, it is currently unknown 

whether a population has been established in this tributary of the PRS. To determine how 

much effort is required to detect LND and to investigate how detection probably varies 

by stream and season, I surveyed Lee Creek and Blackfork Creek in the summer of 2017 

and Lee Creek again in the spring of 2018. Therefore, the objective of this study was to 

sample these systems thought to contain Longnose Darter in an occupancy modeling 
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framework to estimate detection probability and make comparisons about this rare 

species in relation to other co-occurring darters. 

Methods 

Study Area 

 Lee Creek originates within the Boston Mountains ecoregion of Arkansas and 

flows into Oklahoma before turning back east towards its confluence with the Arkansas 

River (Figure 1). The geology of this region is characterized by Pennsylvanian-age 

sandstone and shale (Woods et al. 2005). Lee Creek is designated as one of Oklahoma’s 

six “scenic rivers” (OSRC 2016) and had as many as 78 historically occurring species 

(Funk 1979; FERC 1987). Longnose Darters were first documented in Lee Creek in 1884 

(Jordan and Gilbert 1886) and this stream currently hosts the last known persistent 

populations of LNDs in Oklahoma (Wagner et al. 1985; Gatlin and Long 2011).  

 Blackfork Creek is a tributary of the Poteau River within the Ouachita Mountains 

ecoregion of Oklahoma, originating in Arkansas and flowing west into Oklahoma where 

it meets the Poteau River upstream of Wister Lake (Figure 1). The geology of this region 

is distinct from other tributaries of the Poteau River because it is almost entirely 

contained within the Ouachita Mountains ecoregion, whereas the rest of the Poteau River 

system (PRS) is in the Arkansas Valley ecoregion. The geology of this region is 

characterized by low mountains comprised of folded, sandstone-capped ridges and shale 

valleys (Woods et al. 2005). Blackfork Creek is characterized by cobble, boulder, and 

bedrock substrate typical of this region (Cross and Moore 1952, Woods et al. 2005). 

Longnose Darters had never been documented in Blackfork Creek prior to the 

translocations in 1991-92 (Cross and Moore 1952, Lindsey et al. 1983), although the 
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species assemblage and water quality are similar to Lee Creek (Burns & McDonnell 

1990). However, because no follow up surveys on Blackfork Creek were conducted after 

the translocations, a LND population may persist in this tributary of the Poteau River.   

 

Site Selection 

Lee Creek and Blackfork Creek were selected as the target streams for this survey 

because they host populations of LND (Wagner et al. 1984, Gatlin and Long 2011), or 

plausibly could because of translocations (O’Donnell 1991, 1992). Stream reaches 

(hereafter referred to as sites) were selected based on the results of both the stream 

segment and stream reach scale ecological niche models (ENM) from Chapter 1. To 

conduct a targeted sampling survey of LND in Lee Creek and Blackfork Creek, only 

stream segments and stream reaches from the top two suitability categories from the 

ENMs were considered (Chapter 1; Table 4). Sixteen sites in each stream were selected 

haphazardly from reaches within the top two suitability categories of the stream reach 

ENM that lie within segments in the top two suitability categories of the stream segment 

niche model (Figure 2, Figure 3).  

 

Sampling 

To determine how much effort is required to detect LND in Lee Creek and 

Blackfork Creek, sampling was conducted in an occupancy modeling framework to 

estimate and account for imperfect species detection. Probability of detecting a species 

when it is present is almost never perfect and occupancy modeling uses species encounter 

histories over repeat surveys to estimate this probability (MacKenzie et al. 2002, 2003; 
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Gu and Swihart 2004). Varying species detection probability when sampling under 

different environmental conditions allows factors associated with detection probability to 

be determined and is an especially important consideration when investigating rare 

species (MacKenzie et al. 2005).   

All sites were sampled in an occupancy modeling framework with spatially-

replicated surveys. Spatial replication is useful because all of the repeat surveys at a site 

can be completed in a single day (Albanese et al. 2014; Mollenhauer et al. 2018). A 

summer field season (June – August) was conducted on Lee Creek and Blackfork Creek 

in 2017. Lee Creek was sampled again in the spring of 2018 (March – April), when many 

darter species are spawning in shallow, swift riffle habitats (Thompson 1977; Aadland 

1993; Brewer et al. 2006). Sites were accessed via canoe travel between both private and 

public access locations. 

 To conduct the surveys on Lee Creek and Blackfork Creek a backpack 

electrofisher was used. Backpack electrofishing has been used to capture Longnose 

Darters before (Gatlin and Long 2011) and can be used in a range of habitat types. Ten 

20-m transects (hereafter referred to as surveys) were conducted by traveling upstream in 

wadeable areas (<1 m deep) at each site with a Smith-Root ® LR-20B. The backpack 

electrofisher settings were adjusted to maintain the standard 2-5 amps of electrical output 

that is suitable in streams with moderate levels of conductivity (Rabeni et al. 2009). The 

person operating the backpack electrofisher held a fine-mesh dip net in one hand and a 

standard hoop anode pole in the other. The anode was moved in a sweeping pattern while 

traveling upstream. A technician accompanied the person operating the backpack 

electrofisher and held another fine-mesh dip net to maximize capture of stunned fish. All 
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collected fish were kept in a bucket and after being counted were returned to the water 

downstream from each survey. A single LND was collected and preserved in 70% 

ethanol for use as a voucher specimen; all other LNDs encountered were placed in a 

photo tank (Wild Fish Conservancy ®) where photos were taken of the lateral and dorsal 

surface of each individual. The LNDs were then released at the site of capture.  

Surveys were conducted in haphazardly selected areas at each site. To maintain 

independence between the spatially-replicated surveys, at least 5-m of stream width was 

maintained between adjacent surveys and 10-m of linear stream between from the end of 

any given survey to the beginning of another (Figure 2). Similar techniques have been 

applied to maintain independence of spatially-replicated surveys (Albanese et al. 2011, 

Mollenhauer et al. 2018).  

 Environmental variables were recorded after conducting each backpack 

electrofishing survey. To determine how environmental factors affected detectability 

(MacKenzie et al. 2006), survey-specific covariates were recorded during each sampling 

occasion (Table 1). The survey-specific covariates were recorded at the beginning and 

end points of each survey and averaged. Water clarity was assessed with a 120-cm Secchi 

tube (Forestry Suppliers ®) after allowing the water to settle. Water velocity was 

measured at 0.6 water depth and depth was recorded using a Global Water Flow Probe 

(model FP111) in the same locations at each survey. Proportion of cobble substrate was 

recorded using a 0.5m x 0.5m quadrat and estimates represent proportion of substrate 

within quadrat above 64-mm in size. These covariates were selected because they have 

been used to model the detection probabilities of similar species (Albanese et al. 2011, 

2014; Anderson et al. 2012; Dextrase et al. 2014) and are presumed relevant to LNDs 
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based on similar ecology (Miller and Robison 2004). To account for any spatial 

autocorrelation of surveys within sites, drainage area (km2) for each reach was used to 

account for spatial position. Drainage area was assigned as a non-temporally variant 

detection variable for each survey (NHDPlus version 2; McKay et al. 2012).  

 

Detection Probabilities 

Backpack electrofishing detection probability was quantified by using the 

occupancy modeling framework described by MacKenzie et al. (2002). Occupancy 

models utilize repeat surveys to separate the ecological process and the detection process 

(MacKenzie et al. 2006). Each of these can be modeled as a function of covariates to 

investigate how they change across sites, surveys, and environmental conditions. Because 

an objective of this study was to determine how much effort is required to detect 

Longnose Darters, I focused on the detection process. 

To compare detection probabilities of the darter communities within a season and 

between systems, multi-species detection models (MacKenzie et al. 2004a) were 

developed that included stream as a categorical variable. Banded Darter was the reference 

species used and coefficients of other darters are interpreted in relation to this species. 

Banded Darter was selected as the reference species because it was widely encountered in 

both streams. To compare detection probabilities of a darter community within a system 

and between seasons, Lee Creek was sampled in both the summer and spring field 

seasons. A set of candidate detection models for LND (N= 14) and a set of candidate 

multi-species detection models (N= 22) were developed with varying levels of 

complexity (Table 2; Table 3). Water clarity was not used in any analysis because 
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variation was minimal across all sites in Lee Creek and Blackfork Creek. Water depth, 

water velocity, and substrate size were included as continuous variables. Species, channel 

unit, and stream name were included as categorical variables. A Pearson’s correlation |r| 

>0.7 was used as the threshold for highly correlated variables. All continuous variables 

were natural log-transformed because of right-skewed distributions. The datasets were 

then standardized such that each continuous variable had a mean of 0 and a variance of 1. 

Species-specific detection probabilities were examined by incorporating species as a 

categorical variable and including interaction terms between species and the continuous 

covariates (see Mollenhauer et al. 2018). Detection models were fit using the package 

“unmarked” (Fiske and Chandler 2011) in the statistical software R (version 3.4.2; R. 

Core Team 2017). 

A goodness-of-fit test (MacKenzie and Bailey 2004) was applied to the most 

complex multi-species detection models (n = 300 bootstraps) and indicated that these 

models were not overdispersed (i.e., ĉ ≤ 1, Summer: ĉ = 0.99; Spring: ĉ = 0.86). Models 

were ranked using Akaike information criterion corrected for small sample size (AICc; 

Burnham and Anderson 2002). A trap response (i.e., a change in detection probability 

after the first detection) was added to the top model from each season, where a decrease 

in AICc indicates non-independence among the spatially-replicated surveys. 

 

Results 

Sampling 

In total, 2130 darters among 9 species were sampled between the two field 

seasons (Table 4). Of the 9 species encountered, all 9 were detected in Lee Creek and 7 
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species were detected in Blackfork Creek. Longnose Darter and Sunburst Darter were not 

sampled from any of the sites on Blackfork Creek. Sunburst Darter (Etheostoma 

mihileze), which was recently split from the Stippled Darter (Etheostoma punctulatum; 

Mayden 2010), is an Ozark endemic species and was not expected to be in Blackfork 

Creek. Of the 16 sites in Blackfork Creek, 3 were at the same locations as the 1991-92 

translocation sites (Figure 3). Despite 160 surveys at these 16 sites, Longnose Darters 

were not detected in Blackfork Creek (Table 5).  

Environmental sampling conditions varied between the two field seasons. In the 

summer field season, water velocity was on average lower in Blackfork Creek compared 

to Lee Creek (Table 6). The surveys conducted on Blackfork Creek also had on average 

deeper water and a larger proportion of cobble substrate. Both average water depth and 

average water velocity increased on Lee Creek in the spring compared to the summer 

field season.  

Overall, detection probabilities increased for the darters in Lee Creek in the spring 

field season compared to the summer field season (Table 7). Out of the 9 species 

encountered in Lee Creek, detection increased for 7 species. Detection probabilities 

decreased for Greenside Darter and Sunburst Darter in the spring. Longnose Darter had 

the lowest detection probability (5%) out of the co-occurring species in summer 2017. 

However, when Lee Creek was sampled again in spring 2018, the detection probability 

for LND increased to 10% (Table 7). 
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Analysis 

There were no highly correlated (|r| >0.7) detection covariates in the summer 2017 

or the spring 2018 field season (Table 8). The multi-species candidate models were 

ranked using AICc and a trap response was applied to each top model to see if this 

lowered the AICc value. In both model sets, the trap response showed an improvement 

over the top models (Table 9, 10). This indicates that the spatially-replicated samples 

were not totally independent at each site in both the summer and spring field seasons. 

The top multi-species model for the 2017 summer field season includes 

interaction effects between species and water velocity and depth, an additive relationship 

with channel unit and the trap response, and additive quadratic relationships with depth 

and velocity (Table 3). The additive quadratic effects of depth and velocity are not 

species-specific, whereas the interaction between species, depth, and velocity allow the 

slopes to vary by species. There is a positive linear relationship between detection 

probability and increasing water depth for Logperch, LND, and Sunburst Darter (Figure 

4), while holding all other variables at mean values. However, these estimates do have a 

fair amount of uncertainty around them, as Figure 5 shows for Logperch. The 95% 

confidence intervals for the other species of darters with water depth overlap with zero 

and were not plotted (Table 9). In Blackfork Creek, Logperch, Channel, Orangethroat, 

and Redfin Darters exhibit a negative relationship with increasing water velocity, while 

holding all other variables at mean values (Figure 6). Fantail Darters exhibit a slight 

positive relationship with detection probability and water velocity.  

 The top multi-species model for the spring field season that includes only Lee 

Creek is model 12 with the trap response (Table 2.) This model includes only an 
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interaction between species and quadratic water velocity plus an additive trap effect. All 

9 darter species encountered in Lee Creek in the summer were detected again in the 

spring field season. Of these, only the 95% confidence intervals around the coefficient 

estimates for Logperch, Redfin, and Sunburst Darters did not overlap zero (Table 10, 

Figure 7).  There are varying species-specific quadratic water velocity relationships, but 

these estimates also have uncertainty around them (Figure 8). Figure 7 shows Logperch, 

Redfin Darter, and Sunburst Darter and illustrates their varying species-specific 

relationships. The detection probability for these three species is highest with water 

velocities >0.8 m/s and <1.2 m/s. 

The Longnose Darter only candidate models for both field seasons were no better 

than the null model. Longnose Darters were likely not detected enough to model a 

relationship between their encounter histories and the environmental covariates. 

 

Discussion 

Longnose Darter detection probability was the lowest of all the species sampled 

during the summer field season. While no LND were encountered in Blackfork Creek, a 

detection probability of 0.05 in Lee Creek suggests likely twice the survey effort (20 

surveys) is necessary to detect a Longnose Darter given the species is present. In the 

spring field season, LND detection probability in Lee Creek increased to 0.10. Only 8 

individuals were encountered in the summer and 22 individuals were detected in the 

spring season. Future surveys for Longnose Darters in Lee Creek and in other streams 

with potentially suitable habitat should therefore be conducted in the spring to both 

increase the odds of detecting the species and to decrease the amount of resources used in 
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the field. Gatlin (2013) performed a community assemblage survey of Lee Creek, 

sampling a wide variety of habitats and locations, and detected LND at four locations. 

My targeted sampling for Longnose Darter on Lee Creek resulted in detecting Longnose 

Darters in eight different sites; LND were found at three of the four sites from Gatlin 

(2013) and at five new sites (Table 11). 

The detection probability for Sunburst Darters in Lee Creek ranged from 0.22 in 

the summer field season to 0.07 in the spring field season. Sunburst Darter (Etheostoma 

mihileze) is a species of greatest conservation need in Oklahoma (ODWC 2016). To my 

knowledge, detection probability has never been quantified for this species, or for the 

species it was recently split from, the Stippled Darter (Mayden 2010). This was one of 

only two decreases in species detection probability from summer to spring of the nine 

darter species sampled. If routine monitoring for this species should become a priority, 

knowing detection rates are higher in the summer for Sunburst Darters in Lee Creek will 

aid natural resource managers.  

The detection estimates discussed here are in relation to a backpack electrofishing 

survey. Backpack electrofishing is commonly used in streams and can be applied where a 

tow-barge is impractical (Rabeni et al. 2009). A limitation of backpack electrofishing is 

that you are limited to wadeable depths (<1m). As Longnose Darters are thought to 

occupy pool habitats in the non-spawning season (Robison 1992), using a gear that can 

sample these deeper areas may be preferred. However, because darters are benthic 

species with absent or greatly reduced air bladders (Evans and Page 2003), it can be 

difficult to sample them in these areas. Albanese et al. (2011) estimated darter detection 

probabilities using snorkel surveys, but did not include deep-slow pools. Another concern 
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is that occupancy modeling assumes there are no false species identifications. Backpack 

electrofishing allowed the handling of each LND and insured positive identification 

through use of a photo tank. However, there are only a few ways to identify a Longnose 

Darter from other similar species and there can be conflicting identifications (Holley and 

Long 2018). 

My findings add to existing knowledge about Longnose Darter and can be used in 

future sampling efforts to conserve this species because, while only two streams were 

sampled in this study, this is the first time detection probability has been quantified for 

LND. Any future targeted sampling of LNDs on Lee Creek should be conducted in the 

spring because detection rates are higher. The increased attention imperfect species 

detection has received in the literature in recent years (Kellner and Swihart 2014) is well 

deserved because it affects nearly all species (Kéry and Schmidt 2008). By accounting for 

our imperfect surveys hopefully we can improve conservation efforts for imperiled 

species like the Longnose Darter. 
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APPENDIX A: Tables for Chapter 1 
 

Table 1. Data sources for Longnose Darter occurrence records collected from online 
databases and used in the range-wide niche model.  

Data Sources Collection Dates 
Arkansas Department of Environmental Quality 1963–2014 
Cornell University Museum of Vertebrates 1951–1967 
Illinois Natural History Survey 1948 
Louisiana Museum of Natural History 1984 
Mississippi Museum of Natural Science 1992 
Tulane University Museum of Natural History 1955–1974 
University of Alabama 1991 
University of Arkansas Collections Facility 1962-1963 
University of Kansas Biodiversity Institute 1947–1973 
University of Michigan Museum of Zoology 1939–1955 
University of Texas  1972 
University of Tulsa 1962–1972 
Yale University Peabody Museum 1984–2010 

       Accessed March 2016 
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Table 2. Environmental predictor variables used in the range-wide ecological niche 
model for Longnose Darter at a stream-segment scale. 

Variable Unit Source1 Development Date 
Lithologic type Category CONUS -SOIL 1998 
Depth to bedrock cm CONUS-SOIL 1998 
Soil permeability	 cm/hr CONUS-SOIL 1998 
Rock fragment volume	 % CONUS-SOIL 1998 
Annual precipitation mm*100 NHDPlusV2 2015 
Mean monthly temperature °C*100 NHDPlusV2 2015 
Total drainage area km2 NHDPlusV2 2015 
Maximum elevation cm NHDPlusV2 2015 
Slope km/km NHDPlusV2 2015 
Unimpacted	mean annual 
discharge 

m3/s NHDPlusV2 2015 

Unimpacted	mean annual 
flow velocity 

m/s NHDPlusV2 2015 

1CONUS-SOIL = Conterminous United States Multi-Layer Soil Characteristics 
Dataset, available online http://www.soilinfo.psu.edu/index.cgi, accessed March 
2016; NHDPlusV2 = National Hydrography Dataset Version 2, available online 
https://nhd.usgs.gov/, accessed March 2016. 
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Table 3. Correlation matrix for the predictor variables used in the stream segment 
ecological niche model. Pearson’s |r| >0.7 was used as the threshold for highly correlated 
variables. 

  

Depth-
to-

bedrock 
Soil 

permeability 

Rock 
fragment 
volume 

Annual 
precipitation 

Mean 
monthly 

temperature 

Total 
drainage 

area 
Maximum 
elevation Slope 

Annual 
discharge 

Annual 
flow 

velocity 
Depth-to-bedrock 1 0.37 -0.27 -0.31 -0.34 -0.05 0.02 -0.16 -0.05 0.00 
Soil permeability 0.37 1.00 0.15 0.08 -0.05 0.03 0.05 -0.03 0.01 0.07 
Rock fragment 
volume -0.27 0.15 1.00 0.05 -0.43 -0.14 0.45 0.22 -0.12 0.07 
Annual 
precipitation -0.31 0.08 0.05 1.00 0.34 -0.02 0.09 0.26 -0.02 0.03 
Mean monthly 
temperature -0.34 -0.05 -0.43 0.34 1.00 0.06 -0.61 -0.15 0.05 -0.09 
Total drainage 
area -0.05 0.03 -0.14 -0.02 0.06 1.00 -0.09 -0.04 0.81 0.28 
Maximum 
elevation 0.02 0.05 0.45 0.09 -0.61 -0.09 1.00 0.46 -0.11 -0.01 
Slope -0.16 -0.03 0.22 0.26 -0.15 -0.04 0.46 1.00 -0.05 -0.01 

Annual discharge -0.05 0.01 -0.12 -0.02 0.05 0.81 -0.11 -0.05 1.00 0.42 
Annual flow 
velocity 0.00 0.07 0.07 0.03 -0.09 0.28 -0.01 -0.01 0.42 1.00 

 



	42	
	

Table 4. Categories of increasing probability of suitability for the Longnose Darter at the 
stream segment and stream reach-scale estimated with niche models. The minimum 
training presence (MTP) values were used as the suitability threshold for the unsuitable 
category (0) and the category of lowest suitability (1) at each scale. Categories 1–4 
represent suitability categories above the MTP. 

Maxent Output Values 
Suitability 
Category 

 Segment Reach 
0 0.00 – 0.09 0.00 – 0.18 
1 0.09 – 0.20 0.18 – 0.20 
2 0.20 – 0.50 0.20 – 0.50 
3 0.50 – 0.80 0.50 – 0.71 
4 0.80 – 1.00  
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Table 5. Correlation matrix for the predictor variables used in the stream reach ecological 
niche model. Pearson’s |r| >0.7 was used as the threshold for highly correlated variables.	

  
Reach 
Area 

% 
Riffle 

% 
Run 

% 
Glide 

% 
Pool 

% Rocky-
boulder 

% 
Bedrock % Fine 

Reach Area 1.00 -0.48 -0.39 -0.17 0.60 -0.39 0.39 0.36 
% Riffle -0.48 1.00 0.38 -0.18 -0.73 0.22 -0.22 -0.11 
% Run -0.39 0.38 1.00 -0.24 -0.83 0.19 -0.19 -0.08 
% Glide -0.17 -0.18 -0.24 1.00 -0.07 0.19 -0.19 -0.03 
% Pool 0.60 -0.73 -0.83 -0.07 1.00 -0.32 0.32 0.13 
% Rocky-boulder -0.39 0.22 0.19 0.19 -0.32 1.00 -1.00 -0.03 
% Bedrock 0.39 -0.22 -0.19 -0.19 0.32 -1.00 1.00 0.03 
% Fine 0.36 -0.11 -0.08 -0.03 0.13 -0.03 0.03 1.00 
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Table 6. An example of the disproportionate stratified mapping approach applied to the 
Poteau River system, shown for Blackfork Creek. 

Stream 
Suitability 
Category 

Length 
(km) 

Above 5 km 
Threshold 

Proposed 
Length (km) 

%  
Mapped 

Blackfork Creek 0 0.0 No 0.0 0 
Blackfork Creek 1 8.1 Yes 2.0 25 
Blackfork Creek 2 4.0 No 4.0 100 
Blackfork Creek 3 1.4 No 1.4 100 
Blackfork Creek 4 35.1 Yes 8.8 25 
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Table 7.	Classification scheme and descriptions used to categorize substrate types from 
side-scan sonar images in the Poteau River system of Oklahoma; adapted from Kaeser 
and Litts (2010) and Gatlin (2013). 

 
Class Description 

Fine >75% of area composed of particles < 2-mm diameter (sand, silt, clay, or 
fine organic detritus) 

Rocky-
boulder 

>75% of area comprised of rocks > 64-mm diameter with scattered 
boulders > 500-mm (gravel or cobble) 

Bedrock >75% of area comprised of large, smooth sheets of exposed bedrock or 
outcropping 

	



	46	
	

Table 8. Maxent model outputs for the stream segment and stream reach scale Longnose 
Darter ecological niche models.  

	 	 	Metric Stream 
Segment 

Stream 
Reach 

Training samples 50 15.3 
Testing samples 13 1.7 
Training AUC 0.98 0.79 
Testing AUC 0.92 0.77 

MTP logistic threshold 0.09 0.18 

MTP training omission 0.00 0.00 

MTP test omission 0.23 0.10 
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Table 9. Number of stream segments and total stream length within the suitability 
categories from the range-wide ecological niche model of Longnose Darter. 
 

Suitability 
Category 

Stream 
Segments 

Total Stream 
Length (km) 

0 53068 94084.2 
1 1012 1463.4 
2 984 1444.9 
3 717 840.6 
4 50 71.0 

Total 55831 97904.1 
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Table 10. Environmental variable contribution to model accuracy gain for the range-
wide, stream segment scale ecological niche model. 

 

Variable Percent 
Contribution 

Unimpacted Mean Annual 
Discharge 68.4 

Depth to Bedrock 8.5 
Maximum Elevation 6.9 
Mean Monthly Temperature 6.5 
Lithologic Type 5.2 
Annual Precipitation 4.5 
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Table 11. Streams in Oklahoma with at least 10 km of potentially suitable habitat in the 
suitability categories for Longnose Darter based on the stream segment scale, range-wide 
ecological niche model. 
 

    
Length (km) in Habitat Suitability 

Category 

Ecoregion Stream 1 2 3 Total Length 
Arkansas Valley Canadian River 2.8 5.6 2.0 10.5 
Arkansas Valley Coal Creek 10.3 1.7 0.0 12.0 
Arkansas Valley Fourche Maline 22.9 0.7 0.0 23.6 
Arkansas Valley Poteau River 8.4 3.8 3.8 16.0 
Arkansas Valley Sans Bois Creek 7.8 13.1 0.0 20.9 
Boston Mountains Lee Creek 0.0 12.3 14.2 26.4 
Boston Mountains Little Lee Creek 5.2 18.7 0.0 24.0 
Boston Mountains Sallisaw Creek 0.0 11.2 2.2 13.4 
Ouachita Mountains Big Eagle Creek 7.0 10.0 0.0 16.9 
Ouachita Mountains Blackfork Creek 0.0 11.9 0.0 11.9 
Ouachita Mountains Buffalo Creek 9.0 37.6 0.0 46.6 
Ouachita Mountains Glover River 9.3 6.6 0.0 15.9 
Ouachita Mountains Jackfork Creek 3.1 11.5 2.1 16.7 
Ouachita Mountains Mountain Fork 5.5 31.0 7.9 44.3 
Ouachita Mountains West Fork Glover River 14.1 0.0 0.0 14.1 
Ozark Highlands Baron Fork 44.1 0.6 0.0 44.7 
Ozark Highlands Flint Creek 0.0 9.1 1.4 10.5 
Ozark Highlands Illinois River 68.1 4.8 17.5 90.4 
Ozark Highlands Spavinaw Creek 19.7 3.7 4.0 27.4 
Ozark Highlands Spring Creek 11.1 0.0 0.0 11.1 
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Table 12. A comparison of Lee Creek and Blackfork Creek using results of side-scan 
sonar surveys. The Lee Creek summaries come from Gatlin’s (2013) surveys. 
 

Variable Lee Creek 
Blackfork 

Creek 
Reach Area (m2) 11789 15000 

% Glide 9.7 4.2 

% Pool 47.2 26.7 

% Riffle 21.2 26.7 

% Run 21.8 42.3 
% Rocky-
boulder 96.8 73.6 

% Bedrock 3.2 22.5 

% Fine 0 3.7 
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Table 13. Environmental variable contribution to model accuracy gain for the stream 
reach scale ecological niche model in Lee Creek, Oklahoma. 
 

Variable Percent 
Contribution 

Reach Area 85.4 

% Pool Channel Unit 14.4 

% Bedrock Substrate 0.2 

% Glide Channel Unit 0.0 
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APPENDIX B: Figures for Chapter 1 
 

 

Figure 1. Map of Lee Creek and the Poteau River system in eastern Oklahoma and western 
Arkansas shown with ecoregions and Longnose Darter translocation sites in Blackfork Creek. 
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Figure 2. Map of the occurrence records used in the range-wide ecological niche model 
and the estimated probability of habitat suitability for stream segments in the study area 
above the minimum training presence threshold (Table 4).  
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Figure 3. The Poteau River system and Lee Creek shown with outputs from the range-
wide niche model for the Longnose Darter in categories of increasing probability of 
habitat suitability (Table 4). 
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Figure 4. Environmental variable response curve for unimpacted mean annual discharge, 
the highest contributing variable from the stream segment scale, range-wide ecological 
niche model. 
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Figure 5. Streams in Oklahoma with >10 km of high probability of habitat suitability for 
Longnose Darter from the stream segment, range-wide ecological niche model (Table 
11). 
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Figure 6. Lee Creek shown with outputs from the reach scale niche model for Longnose 
Darter in categories of increasing probability of habitat suitability (see Table 4), shown 
with Longnose Darter occurrences that were used to train the model (N = 17). 
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Figure 7. Environmental variable response curves from the stream reach scale ecological 
niche model. Panel A shows the response curve for the continuous variable Reach Area 
(m2) and panel B shows the response curve for the continuous variable % Pool.

A 

B 
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APPENDIX C: Tables for Chapter 2 

Table 1. Environmental covariates used to estimate detection probability, shown with 
metrics and methods of calculation or measurement. 

          Covariate Method 
Water Clarity (m) Secchi tube, 120-cm 

Water Velocity (m/sec) Measured at 0.6 depth at endpoints of surveys 

Depth (m) Measured at endpoints of surveys 

Proportion of cobble 
substrate 

Proportion of 0.5m x 0.5m quadrat comprised of cobble 
substrate (>64-mm) at endpoints of surveys 
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Table 2. List of candidate models (n=22) for the spring 2018 multi-species detection 
models of nine darter species in Lee Creek, Oklahoma. Ψ is occupancy, p is detection 
probability, K is the number of parameters in the model. “da” is for drainage area. * 
denotes the top model. 

# Model K AICc 
null Ψ(~1),p(~1) 2 1214.099 
 1 Ψ(da),p(species) 11 1090.961 
 2 Ψ(da),p(species + depth + depth2) 13 1083.041 
 3 Ψ(da),p(species + velocity + velocity2) 13 1056.949 
 4 Ψ(da),p(species + substrate) 25 1090.776 
 5 Ψ(da),p(species + channel unit) 14 1065.130 
 6 Ψ(da),p(species + depth + depth2 + velocity + velocity2) 15 1054.993 
 7 Ψ(da),p(species + depth + depth2 + velocity + velocity2 + substrate + channel unit) 19 1039.521 
 8 Ψ(da),p(species*depth + depth2) 21 1085.358 
 9 Ψ(da),p(species*velocity + velocity2) 21 1035.223 
 10 Ψ(da),p(species*substrate) 20 1069.656 
 11 Ψ(da),p(species*(depth + depth2)) 29 1098.961 
12 Ψ(da),p(species*(velocity + velocity2)) 29 1020.691 

*12_trap Ψ(da),p(species*(velocity + velocity2) + trap) 30 1016.326 
 13 Ψ(da),p(species*(depth + depth2 + substrate)) 38 1081.465 
 14 Ψ(da),p(species*(velocity + velocity2 + substrate)) 38 1026.398 
 15 Ψ(da),p(species*(depth + velocity) + depth2 + velocity2) 31 1046.730 
 16 Ψ(da),p(species*(depth + velocity) + depth2 + velocity2 + channel unit) 34 1052.067 
 17 Ψ(da),p(species*(depth + depth2 + velocity + velocity2)) 47 1074.326 
 18 Ψ(da),p(species*(depth + velocity + substrate) + depth2 + velocity2 + channel unit) 43 1061.349 
 19 Ψ(da),p(species*(depth + depth2 + velocity + velocity2) + channel unit) 50 1087.231 
 20 Ψ(da),p(species*(depth + depth2 + velocity + velocity2 + substrate)) 56 1103.298 
 21 Ψ(da),p(species*(depth + depth2 + velocity + velocity2 + substrate) + channel unit 59 1126.567 
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Table 3. List of candidate models (n=22) for the summer 2017 multi-species detection 
models of nine darter species in Lee Creek and Blackfork Creek, Oklahoma. Ψ is 
occupancy, p is detection probability, K is the number of parameters in the model. “da” is 
for drainage area. * denotes the top model. 

# Model K AICc 
null Ψ(~1),p(~1) 2 2574.026 
 1 Ψ(stream + da),p(species) 12 2440.464 
 2 Ψ(stream + da),p(species + depth + depth2) 14 2380.080 
 3 Ψ(stream + da),p(species + velocity + velocity2) 14 2385.137 
 4 Ψ(stream + da),p(species + substrate) 13 2437.276 
 5 Ψ(stream + da),p(species + channel unit) 15 2367.637 
 6 Ψ(stream + da),p(species + depth + depth2 + velocity + velocity2) 16 2370.496 

 7 
Ψ(stream + da),p(species + depth + depth2 + velocity + velocity2 + 
substrate + channel unit) 20 2360.546 

 8 Ψ(stream + da),p(species*depth + depth2) 22 2308.660 
 9 Ψ(stream + da),p(species*velocity + velocity2) 22 2286.232 
 10 Ψ(stream + da),p(species*substrate) 21 2435.144 
 11 Ψ(stream + da),p(species*(depth + depth2)) 30 2320.952 
 12 Ψ(stream + da),p(species*(velocity + velocity2)) 30 2284.216 
 13 Ψ(stream + da),p(species*(depth + depth2 + substrate)) 39 2307.551 
 14 Ψ(stream + da),p(species*(velocity + velocity2 + substrate)) 39 2285.108 
 15 Ψ(stream + da),p(species*(depth + velocity) + depth2 + velocity2) 32 2255.935 

 16 
Ψ(stream + da),p(species*(depth + velocity) + depth2 + velocity2 + 
channel unit) 35 2244.591 

*16_trap 
Ψ(stream + da),p(species*(depth + velocity) + depth2 + velocity2 + 
channel unit + trap) 36 2235.262 

 17 Ψ(stream + da),p(species*(depth + depth2 + velocity + velocity2)) 48 2273.172 

 18 
Ψ(stream + da),p(species*(depth + velocity + substrate) + depth2 + 
velocity2 + channel unit) 44 2245.685 

 19 
Ψ(stream + da),p(species*(depth + depth2 + velocity + velocity2) + 
channel unit) 51 2262.708 

 20 
Ψ(stream + da),p(species*(depth + depth2 + velocity + velocity2 + 
substrate)) 57 2275.278 

 21 
Ψ(stream + da),p(species*(depth + depth2 + velocity + velocity2 + 
substrate) + channel unit 60 2268.949 
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Table 4. Sampling catch summary for nine species of darters from Lee Creek and 
Blackfork Creek in Oklahoma from the summer 2017 and spring 2018 field seasons. 

Scientific Name Common Name 

Blackfork 
Creek 

(Summer '17) 
Lee Creek 

(Summer '17) 
Lee Creek 

(Spring '18) 
Etheostoma blennioides Greenside Darter 155 113 45 
Etheostoma flabellare Fantail Darter 247 213 154 
Etheostoma mihileze Sunburst Darter 0 29 19 
Etheostoma spectabile Orangethroat Darter 54 139 173 
Etheostoma whipplei Redfin Darter 101 66 68 
Etheostoma zonale Banded Darter 48 172 196 
Percina caprodes Logperch 21 18 26 
Percina copelandi Channel Darter 13 3 27 
Percina nasuta Longnose Darter 0 8 22 

 
Total 639 761 730 
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Table 5.  A summary of the number of sites and surveys each darter species was detected 
in by season and stream.  

Season Stream Species 
Sites w/ 
detection 

Surveys w/ 
detection 

Summer Blackfork Creek Banded Darter 13/16 31/160 
Summer Blackfork Creek Channel Darter 8/16 13/160 
Summer Blackfork Creek Fantail Darter 16/16 70/160 
Summer Blackfork Creek Greenside Darter 16/16 73/160 
Summer Blackfork Creek Logperch 9/16 18/160 
Summer Blackfork Creek Orangethroat Darter 13/16 35/160 
Summer Blackfork Creek Redfin Darter 16/16 63/160 
Summer Lee Creek Banded Darter 15/15 67/143 
Summer Lee Creek Channel Darter 2/15 2/143 
Summer Lee Creek Fantail Darter 13/15 42/143 
Summer Lee Creek Greenside Darter 15/15 50/143 
Summer Lee Creek Logperch 7/15 11/143 
Summer Lee Creek Longnose Darter 4/15 5/143 
Summer Lee Creek Orangethroat Darter 15/15 60/143 
Summer Lee Creek Redfin Darter 14/15 45/143 
Summer Lee Creek Sunburst Darter 8/15 19/143 
Spring Lee Creek Banded Darter 12/12 73/116 
Spring Lee Creek Channel Darter 5/12 12/116 
Spring Lee Creek Fantail Darter 12/12 57/116 
Spring Lee Creek Greenside Darter 10/12 33/116 
Spring Lee Creek Logperch 7/12 15/116 
Spring Lee Creek Longnose Darter 8/12 12/116 
Spring Lee Creek Orangethroat Darter 12/12 68/116 
Spring Lee Creek Redfin Darter 12/12 45/116 
Spring Lee Creek Sunburst Darter 7/12 8/116 
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Table 6. Summary statistics for the detection covariates during the summer 2017 field 
season in Lee Creek and Blackfork Creek and the spring 2018 field season in Lee Creek. 

Season Stream Parameter Mean SD Range 

Summer 
2017 Lee Creek 

Water Depth (cm) 35.07 14.45 7.5 - 82 
Water Velocity (m/s) 0.23 0.26 0.0 - 1.25 
Proportion of cobble 
substrate (% >64 mm) 

58.02 23.56 0 - 100 

Summer 
2017 

Blackfork 
Creek 

Water Depth (cm) 42.79 15.67 11- 83.5 

Water Velocity (m/s) 0.10 0.17 0 - 0.9 
Proportion of cobble 
substrate (% >64 mm) 

68.60 19.25 10 - 100 

Spring    
2018 Lee Creek 

Water Depth (cm) 38.35 15.36 11.5 - 87 

Water Velocity (m/s) 0.35 0.31 0.0 - 1.50 
Proportion of cobble 
substrate (% >64 mm) 

49.27 21.17 0 - 100 
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Table 7. Comparison of null detection probabilities estimates for nine species of darter 
from Lee Creek and Blackfork Creek between seasons. p is detection probability. n is the 
number of individuals detected. 

  Summer 2017 Spring 2018 
% Change 

(Summer - Spring) Species 
        
p n p n 

Greenside Darter 0.41 268 0.34 45 -17 
Fantail Darter 0.38 460 0.49 154 29 
Redfin Darter 0.36 167 0.39 68 8 
Banded Darter 0.35 220 0.63 196 80 
Orangethroat Darter 0.31 193 0.59 173 90 
Sunburst Darter 0.22 29 0.07 19 -68 
Logperch 0.14 39 0.19 26 36 
Channel Darter 0.10 16 0.22 27 120 
Longnose Darter 0.05 8 0.10 22 100 
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Table 8. Correlation matrix for the continuous variables used in the candidate detection 
probability models. A threshold of Pearson’s |r| >0.7 was used for highly correlated 
variables. 

Season   
Average water 

velocity 
Average water 

depth 
Average proportion 

cobble substrate 

Summer 2017 

Average water velocity 1.00 -0.66 -0.34 
Average water depth -0.66 1.00 0.20 
Average proportion 
cobble substrate 

-0.34 0.20 1.00 

Spring 2018 

Average water velocity 1.00 -0.43 -0.22 
Average water depth -0.43 1.00 0.21 
Average proportion 
cobble substrate 

-0.22 0.21 1.00 
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Table 9. Model summary showing coefficients, standard error (SE) and 95% confidence 
intervals (CI) from the top model for the nine darter species in Blackfork Creek and Lee 
Creek in the summer of 2017. 

Parameter 
Coefficient 

± SE 95% CI 
Intercept -0.58 ± 0.29 -1.15, -0.01 
Water Depth -0.38 ± 0.17 -0.71, -0.05 
Water Velocity 0.79 ± 0.20 0.40, 1.18 
Water Depth2 -0.09 ± 0.05 -0.19, 0.01 
Water Velocity2 -0.06 ± 0.16 -0.37, 0.25 
Pool CU -0.81 ± 0.24 -1.28, -0.34 
Riffle CU 0.10 ± 0.24 -0.37, 0.57 
Run CU -0.42 ± 0.2 -0.81, -0.03 
Trap 0.42 ± 0.12 0.18, 0.66 
Channel Darter -2.05 ± 0.37 -2.78, -1.32 
Fantail Darter 0.37 ± 0.22 -0.06, 0.80 
Greenside Darter 0.53 ± 0.21 0.12, 0.94 
Logperch -1.36 ± 0.30 -1.95, -0.77 
Longnose Darter -2.81 ± 0.74 -4.26, -1.36 
Orangethroat Darter 0.26 ± 0.22 -0.17, 0.69 
Redfin Darter 0.44 ± 0.21 0.03, 0.85 
Sunburst Darter -0.81 ± 0.33 -1.46, -0.16 
Channel Darter, depth 0.84 ± 0.44 -0.02, 1.70 
Fantail Darter, depth -0.42 ± 0.24 -0.89, 0.05 
Greenside Darter, depth 0.19 ± 0.22 -0.24, 0.62 
Logperch, depth 0.74 ± 0.34 0.07, 1.41 
Longnose Darter, depth 1.75 ± 0.77 0.24, 3.26 
Orangethroat Darter, depth -0.20 ± 0.23 -0.65, 0.25 
Redfin Darter, depth 0.03 ± 0.22 -0.40, 0.46 
Sunburst Darter, depth 0.68 ± 0.34 0.01, 1.35 
Channel Darter, velocity -1.43 ± 0.39 -2.19, -0.67 
Fantail Darter, velocity -0.61 ± 0.25 -1.10, -0.12 
Greenside Darter, velocity -0.36 ± 0.25 -0.85, 0.13 
Logperch, velocity -1.57 ± 0.32 -2.20, -0.94 
Longnose Darter, velocity -1.03 ± 0.52 -2.05, -0.01 
Orangethroat Darter, velocity -1.19 ± 0.25 -1.68, -0.70 
Redfin Darter, velocity -1.31 ± 0.24 -1.78, -0.84 
Sunburst Darter, velocity -1.23 ± 0.34 -1.90, -0.56 
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Table 10. Model summary showing coefficients, standard error (SE) and 95% confidence 
intervals (CI) from the top model for the nine darter species in Lee Creek in the spring of 
2018.  

Parameter Coefficient ± SE 95% CI 
Intercept -0.29 ± 0.41 -1.09, 0.51 
Water Velocity 1.95 ± 0.67 0.64, 3.26 
Water Velocity2 0.61 ± 0.39 -0.15, 1.37 
Trap 0.52 ± 0.18 0.17, 0.87 
Channel Darter -1.49 ± 0.74 -2.94, -0.04 
Fantail Darter -1.83 ± 0.66 -3.12, -0.54 
Greenside Darter -1.87 ± 0.65 -3.14, -0.60 
Logperch -0.66 ± 0.61 -1.86, 0.54 
Longnose Darter -1.61 ± 0.69 -2.96, -0.26 
Orangethroat Darter 0.47 ± 0.55 -0.61, 1.55 
Redfin Darter 0.07 ± 0.55 -1.01, 1.15 
Sunburst Darter -1.24 ± 0.68 -2.57, 0.09 
Channel Darter, velocity 0.17 ± 3.20 -6.10, 6.44 
Fantail Darter, velocity 2.35 ± 1.13 0.14, 4.56 
Greenside Darter, velocity 0.13 ± 0.96 -1.75, 2.01 
Logperch, velocity -4.35 ± 1.17 -6.64, -2.06 
Longnose Darter, velocity -2.25 ± 1.10 -4.41, -0.09 
Orangethroat Darter, velocity -1.56 ± 0.88 -3.28, 0.16 
Redfin Darter, velocity -2.72 ± 0.89 -4.46, -0.98 
Sunburst Darter, velocity -4.35 ± 1.39 -7.07, -1.63 
Channel Darter, velocity2 -5.57 ± 4.40 -14.19, 3.05 
Fantail Darter, velocity2 1.16 ± 0.66 -0.13, 2.45 
Greenside Darter, velocity2 0.32 ± 0.57 -0.80, 1.44 
Logperch, velocity2 -1.87 ± 0.65 -3.14, -0.60 
Longnose Darter, velocity2 -0.98 ± 0.65 -2.25, 0.29 
Orangethroat Darter, velocity2 -0.71 ± 0.51 -1.71, 0.29 
Redfin Darter, velocity2 -1.03 ± 0.51 -2.03, -0.03 
Sunburst Darter, velocity2 -2.02 ± 0.76 -3.51, -0.53 
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Table 11. Coordinates of Longnose Darters detected while sampling Lee Creek in the 
summer and spring field seasons. 

Season Stream Latitude Longitude 
Summer Lee Creek 35.587703 -94.489627 
Summer Lee Creek 35.570027 -94.529561 
Summer Lee Creek 35.532428 -94.493939 
Summer Lee Creek 35.522764 -94.474328 
Spring Lee Creek 35.612079 -94.487881 
Spring Lee Creek 35.590276 -94.484929 
Spring Lee Creek 35.576803 -94.526946 
Spring Lee Creek 35.561575 -94.532158 
Spring Lee Creek 35.532428 -94.493939 
Spring Lee Creek 35.529938 -94.493869 
Spring Lee Creek 35.519613 -94.482183 
Spring Lee Creek 35.522764 -94.474328 
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APPENDIX D: Figures for Chapter 2 

Figure 1. Map of Lee Creek and the Poteau River system in eastern Oklahoma and western 
Arkansas shown with ecoregions and Longnose Darter translocation sites in Blackfork Creek. 
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Figure 2. Sampling sites (16 stream reaches) in Lee Creek in Oklahoma shown with 
example surveys. 
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Figure 3. Sampling sites (16 stream reaches) in Blackfork Creek in Oklahoma shown 
with 1991-92 Longnose Darter translocation sites.
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Figure 4. Detection probabilities by water depth for Logperch, Longnose Darter, and 
Sunburst Darter from the top model in the summer 2017 field season. The y-axis is scaled 
to 0.5 detection probability.
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Figure 5. Detection probabilities by water for Logperch from the top model in the 
summer 2017 field season. Dashed lines represent the 95% confidence interval. The y-
axis is scaled to 0.5 detection probability.
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Figure 6. Detection probabilities by water velocity for the darter community in Blackfork 
Creek from the top model in the summer 2017 field season.
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Figure 7. Detection probabilities by water velocity for Logperch, Redfin Darter, and 
Sunburst Darter in Lee Creek, OK from the top model of the spring 2018 field season. 
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Figure 8. Detection probability by water velocity for Logperch in Lee Creek, OK from 
the top model of the spring 2018 field season. Dashed lines represent the 95% confidence 
interval.	
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imperiled and at least 27 species of North American fish have gone extinct within the last 
century. In Oklahoma, the Longnose Darter (LND) is a state-endangered fish species that 
was presumed extirpated from much of its range in Oklahoma for almost 70 years. 
Efforts to translocate this species in the 1990s went unassessed and their current 
distribution in Oklahoma is largely unknown. My objectives were to create ecological 
niche models at two spatial scales to identify potentially suitable habitat for LND and to 
sample two streams thought to contain LND in an occupancy modeling framework to 
estimate detection probability. The program Maxent was used to estimate probability of 
habitat suitability throughout the historical range of LND using a presence-only 
approach. This model identified several streams in Oklahoma with high probability of 
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selecting 32 sites in Lee Creek and Blackfork Creek in Oklahoma, darter species were 
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CHAPTER I 
 

 

MULTI-SCALE ENVIRONMENTAL NICHE MODELING TO ESTIMATE HABITAT 

SUITABILITY OF LONGNOSE DARTER (PERCINA NASUTA) IN OKLAHOMA 

Introduction 

Anthropogenic influences on freshwater aquatic ecosystems have led to the 

decline of many freshwater fish species (Allan and Flecker 1993; Ricciardi and 

Rasmussen 1999). In North America alone, more than 700 species of freshwater fish are 

considered imperiled (Jelks et al. 2008) and at least 27 species of North American fish 

have gone extinct within the last century (Miller et al. 1989). Threats to freshwater 

biodiversity include overexploitation, anthropogenic habitat degradation and flow 

modification, and competition with invasive or introduced species (Dudgeon et al. 2006; 

Helfman 2007). Freshwater habitat degradation through flow modification is not only one 

of the greatest threats to aquatic biodiversity, but also one of the most widespread 

(Nilsson et al. 2005), sometimes leading populations to local extinction (Wilcox and 

Murphy 1985). 

State and federal agencies are tasked with conserving rare, threatened, and 

endangered species (McMullin and Pert 2010) and documenting their trends in 

abundance and range extent are critical for this task. Robust surveys to document species 

presence are important because there have been several cases of species being 

rediscovered after many years of assumed extirpation or extinction, even in areas with 
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highly modified environments (Hammer et al. 2015). For example, the Black Kokanee 

(Oncorhynchus kawamurae), a deepwater trout native to Japan, was recently rediscovered 

within its historic range after 70 years of assumed extinction (Nakabo et al. 2011). Also, 

the Robust Redhorse (Moxostoma robustum) was rediscovered within its historic range 

after more than 120 years without a sighting (Hendricks 1998). After its rediscovery in 

1991, several unsuccessful surveys for Robust Redhorse were conducted within the 

historic range in an attempt to find additional individuals (Nichols 2003). A considerable 

amount of effort is often dedicated towards finding rare fish species and a more refined 

sampling approach may reduce the costs of these surveys and time spent sampling 

(Guisan et al. 2006).  

In Oklahoma, many fish species have suffered range-loss and could become 

extinct, including Arkansas River Shiner (Notropis girardi), Neosho Madtom (Noturus 

placidus), Leopard Darter (Percina pantherina), and Longnose Darter (LND; Percina 

nasuta). The first three species are currently listed as federally endangered and as such, 

federal agencies are tasked with monitoring these species (McMullin and Pert 2010). 

Currently, the Longnose Darter (Bailey 1941) is one of 404 species from the Southeastern 

United States petitioned for listing under the Endangered Species Act (Center for 

Biological Conservation 2010). However, little current information on LNDs exists to 

assist in this determination. In Oklahoma, LNDs are designated as state-endangered, a 

Tier 1 species of concern (ODWC 2016), and considered “threatened” throughout its 

entire range (Jelks et al. 2008). One of Oklahoma’s rarest fish species (Robison 1992; 

Miller and Robison 2004), the LND likely suffered population declines after the 

completion of Wister Dam in 1949. For over 60 years attempts to capture it in the Poteau 
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River system (PRS) failed (Cross and Moore 1952; Lindsey et al. 1983; Wagner et al. 

1985), suggesting it had been extirpated from this system. However, in 2015 a LND was 

collected from the Poteau River upstream of Wister Lake (OWRB 2015). This record 

highlights how little we know about Longnose Darters’ detectability and their distribution 

in Oklahoma. Longnose Darters are benthic insectivores that inhabit gravel riffles and 

shallow pools of upland streams within the Arkansas River drainage of Arkansas, 

Missouri, and Oklahoma (Miller and Robison 2004). Historically, LND were only known 

to definitively occur in Oklahoma in two river systems, Lee Creek and the PRS (multiple 

occurrences in the Poteau River and 1 occurrence in Brazil Creek), and only the 

population in Lee Creek is known to consistently persist (Burns & McDonnell 

Engineering Company 1990; Gatlin and Long 2011).  

A potentially viable population of translocated LND may exist in Blackfork 

Creek, a tributary of the Poteau River. When dam construction on Lee Creek was 

proposed by the city of Fort Smith, Arkansas in 1989, concern grew that LND might be 

extirpated from Lee Creek. Translocation efforts in 1991-92 resulted in ~164 individuals 

moved from Lee Creek into three locations of Blackfork Creek to create a refuge 

population (Burns & McDonnell Engineering Company 1989) (Figure 1). Surveys 

conducted prior to translocation failed to collect any LND in Blackfork Creek (Burns & 

McDonnell Engineering Company 1990), although this stream is within the historic range 

of the species (Cross and Moore 1952). Blackfork Creek has not been surveyed for LND 

since the translocation in 1992 and the success of these efforts is unknown.  

Ecological niche models (ENM) have been applied to a wide range of species and 

geographic areas (Elith and Leathwick 2009). These types of models have been used to 
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prioritize conservation areas (Urbina-Cardona and Flores-Villela 2010) and to identify 

new populations of endemic habitat specialist fishes (Rhoden et al. 2017). Their use has 

helped the search for many species of conservation concern by identifying areas with 

suitable habitat, but these techniques have largely been applied to plants and terrestrial 

animals (Fois et al. 2018). Several studies that have used ENMs on aquatic species have 

successfully identified previously undiscovered populations (Rhoden et al. 2017) and 

possible protection areas with the highest species richness (Castillo-Torres et al. 2017). 

Aquatic ecosystems are one of the most impacted ecosystems by climate change and 

other anthropogenic influences such as flow modification and habitat degradation 

(Dudgeon et al. 2006). Multi-scale ecological niche models could aid management 

agencies in their task of monitoring and conserving areas for species of conservation 

concern.  

Ecological niche models that rely on presence-only information, such as Maxent, 

provide a mechanism to estimate potential locations where LND may occur, especially at 

sites that have either not been sampled or not sampled extensively. Maxent uses species 

occurrence information and environmental predictors to infer habitat suitability in areas 

without occurrence data (Peterson et al. 2002, 2011). At a broad, river-segment scale, 

large stream segments from across its historical range that have potentially suitable 

habitat for LND can be identified. But, such a large scale is difficult to use later to select 

sampling locations to search for rare species. A finer-scale model that incorporates local 

environmental variables is better suited to identify areas to survey within the stream 

segments predicted suitable with the range-wide model. Thus the objectives of this study 

are to aid future sampling efforts where the goal is to detect LND by using ecological 
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niche models at two different spatial scales to (1) estimate habitat suitability in streams 

throughout the historical range of Longnose Darter and (2) estimate habitat suitability at 

the stream reach scale in Lee Creek and Blackfork Creek. 

 

Methods 

Study Area 

 The historical range of Longnose Darter extends across three states and four EPA 

level III ecoregions. The Ozark Highlands is partly covered by oak-hickory forest and is 

underlain by karst and dolomite features (Woods et al. 2005). The geology of the Boston 

Mountains ecoregion is characterized Pennsylvanian-age sandstone and shale. The 

Arkansas Valley ecoregion is a synclinal and alluvial valley that lies between the Boston 

Mountains and Ouachita Mountains ecoregion; it is also characterized by Pennsylvanian-

age sandstone and shale geology. The Ouachita Mountains are structurally different from 

the Boston Mountains and are lithologically distinct from the Ozark Highlands. This 

ecoregion is largely forested and is comprised of oak, hickory, and pine trees. The 

streams within these four ecoregions flow primarily into the Arkansas River and White 

River drainages.  

 The Poteau River flows within the Arkansas Valley ecoregion of Arkansas and 

Oklahoma, originating in Arkansas and flowing west into Oklahoma where it turns 

abruptly north towards its confluence with the Arkansas River (Figure 1). Constructed in 

1949, Wister Dam impounds the Poteau River where it meets Fourche Maline Creek. 

Upstream from Wister Lake, the Poteau River and its tributaries are characterized by 

boulder-gravel substrate typical of this region (Cross and Moore 1952; Lindsey et al. 
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1983). Downstream of Wister Lake, the Poteau River and its tributaries transition into 

more turbid, lowland rivers characterized by muddy riverbeds and occasional shale 

outcroppings. Historically, 89 species of fish inhabited the Poteau River system (Cross 

and Moore 1952), but more recent surveys have shown a declining abundance of a 

number of fish species (Lindsey et al. 1983). A general survey of the Poteau River failed 

to capture LND in 1974 (Lindsey et al. 1983) and until recently LND were assumed 

extirpated (Wagner et al. 1985, OWRB 2015). However, because of the unassessed 

translocations into Blackfork Creek, a LND population may persist in this tributary of the 

Poteau River. 

 Lee Creek originates within the Boston Mountains ecoregion of Arkansas and 

flows into Oklahoma before turning back east towards its confluence with the Arkansas 

River (Figure 1). Lee Creek is designated as one of Oklahoma’s six “scenic rivers” 

(OSRC 2016) and historically had as many as 78 fish species (Funk 1979; FERC 1987). 

Longnose Darters were first documented in Lee Creek in 1886 (Jordan and Gilbert 1886) 

and this stream hosts the last known persistent populations of Longnose Darters in 

Oklahoma (Wagner et al. 1985; Gatlin and Long 2011).  

 

Modeling 

 Ecological niche models created with the program Maxent were used to identify 

potentially suitable habitat for LND throughout its range particularly in Oklahoma, 

including Lee Creek and the PRS. Maxent is a machine-learning algorithm that uses 

presence-only occurrence data to produce a map of locations with probability of habitat 

suitability (Phillips et al. 2006; Elith et al. 2011). Habitat suitability probabilities can then 
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be divided into strata of suitability categories, which can be used to guide future sampling 

efforts by natural resource agencies (Guisan et al. 2006). Rare species in particular are 

detected imperfectly when sampling, leading to difficulties in making inferences about 

their populations (MacKenzie et al. 2005). Although imperfect detection can bias 

inferences and predictions in a presence-background approach like Maxent, the resulting 

niche models can be used to prioritize areas for future sampling by ranking sites in terms 

of habitat suitability, but not to estimate actual probabilities of site occupancy (Lahoz-

Monfort et al. 2014). To model Longnose Darter habitat suitability throughout their entire 

range while also incorporating more local habitat characteristics, models were created at 

two scales in this study: a stream segment, range-wide scale and at a more local, stream 

reach scale. The range-wide model identified potentially suitable stream segments within 

the species range, as well as identified suitable areas for finer-scale modeling. I used Lee 

Creek and Blackfork Creek for an assessment of habitat suitability in streams where this 

species has been recently documented or translocated. Longnose Darters were long 

presumed extirpated within their historic range in the Poteau River (Cross and Moore 

1952; Lindsey et al. 1983; Burns & McDonnell Engineering Company 1990), but are 

presumed to still occur in Lee Creek (Gatlin and Long 2011) and could likely occur in 

Blackfork Creek (Burns & McDonnell Engineering Company 1990). It is possible that 

remnant populations of Longnose Darters exist in streams that have not been previously 

sampled for this species; determining probability of habitat suitability throughout their 

range would benefit natural resource management agencies in their search for 

undiscovered populations. 
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Stream Segment Model — The range-wide model was completed prior to the stream reach 

scale modeling, and was conducted in a team setting that included myself, faculty, and 

graduate students. This model was based on a presence-only LND occurrence dataset 

from online databases (e.g., BISON and Vertnet; Table 1) and coarse-scale environmental 

variables at the stream segment resolution. When historical records lacked precise GPS 

coordinates, the program Geolocate was used to assign coordinates based upon textual 

locality descriptions (Rios and Bart 2010). Occurrence records were then associated with 

stream segments (flowlines) in the Arkansas River basin drainage (USGS hydrologic 

region 11) of the National Hydrography Dataset (NHD) that intersect with EPA level III 

ecoregions in Missouri, Arkansas, and Oklahoma, encompassing the range of LND (i.e., 

Ouachita Mountains, EPA level III ecoregion 36; Arkansas Valley, 37; Boston 

Mountains, 38; and Ozark Highlands, 39). 

After joining occurrence records to the selected NHDPlus flowlines in ArcMap 

(ESRI 10.3.1), duplicate records were removed and a single occurrence was retained for 

that segment. Of the ecoregions selected, those with the majority of LND records were 

selected as the model training area. The remaining ecoregions represented the model 

testing area to evaluate fit and performance. Eleven coarse-scale hydrologic and 

geological habitat covariates that quantify the natural abiotic and streamflow 

characteristics of the study area were included in the model (Albanese et al. 2014, Taylor 

et al. 2018; Table 2). Briefly, depth-to-bedrock is a metric quantifying the how deep the 

bedrock is under the soil, soil permeability is a measure of the ease with which air and 

water move through the soil, and rock fragment volume is a measure of particles >2 mm 
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in the soil. Within the NHDPlus dataset, variables were selected that represent both the 

climate of the region (e.g, annual precipitation and maximum elevation) and streamflow 

characteristics (e.g., unimpacted mean annual discharge and slope). Total drainage area 

was removed because it had a Pearson’s correlation coefficient of |r| >0.7 with 

unimpacted discharge (Table 3). After an initial model run, predictor variables that 

contributed <2% to model accuracy gain were removed to avoid model overfitting. I 

selected the logistic output option in the Maxent algorithm because it reports values 

ranging from 0.0-1.0, which can be used to rank sites according to habitat suitability 

(Elith et al. 2011). When producing the logistic output, Maxent assumes and sets the 

prevalence (τ) of a species at typical presence locations at 0.5 by default. Little prior data 

exists for LND prevalence so this default value was used. The number of background 

points was increased to 100,000. The jackknife option for variable importance was 

selected to determine the degree to which each environmental variable contributed to 

predicted habitat suitability. The minimum training presence (MTP) value was applied as 

a threshold to the logistic output values, where the lowest suitability value associated 

with a presence location became the cutoff for determining suitable and non-suitable 

stream segments. Values greater than the MTP threshold were separated into four 

categories of increasing probability of habitat suitability (Table 4). All other settings were 

left as default in the Maxent software. The resulting model estimates environmental 

habitat suitability for all stream segments in the study area, many of which have not been 

sampled for Longnose Darters in the past. 
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Stream Reach Model — Fine-scale habitat and LND occurrence data on Lee Creek exists 

from previous studies (Burns & McDonnell Engineering Company 1989; Gatlin 2013). I 

used this data to model Lee Creek at the reach scale and projected estimated probability 

of habitat suitability into Blackfork Creek, where LND have been translocated. The LND 

occurrence records available for this scale represent sites from across a variety of habitats 

along the entirety of Lee Creek in Oklahoma and include general substrate composition 

and channel unit information. Burns & McDonnell Engineering Company (1989) 

specifically targeted LNDs in their sampling of Lee Creek during FERC licensing of Lee 

Creek Dam. Their sampling design targeted riffles and raceway areas, including habitat 

descriptions for each site where LNDs were captured. Gatlin (2013) surveyed channel 

units in a probabilistic fashion for fish communities and recorded channel unit and 

substrate information, including at sites where LNDs were encountered. These two 

surveys within Lee Creek were sampled in relation to the available channel units, 

reducing sampling bias often found with museum records (Phillips et al. 2009). However, 

these data are also biased towards sampling in shallow water. The stream reach niche 

model was created using stream reach polygons (riffle-to-riffle) in the samples-with-data 

(SWD) format in Maxent. Of the predictor variables summarizing reach channel unit and 

substrate type composition, % Pool, % Bedrock, and % Glide were selected because they 

are not highly correlated (Table 5). The logistic output and jackknife options in Maxent 

were used as in the range-wide model. A 10-fold model cross-validation was applied to 

this model and provided mean values and error estimates from the 10 model replicates. In 

cross-validation, samples are evenly divided into folds, and during each of the specified 

number runs, each fold is left out of the model once as a testing subset (Merow et al. 



	
	

11	

2013). The model was trained and tested on Lee Creek occurrence records and projected 

into Blackfork Creek. 

The environmental variables to be used in this ENM (i.e., substrate composition, 

channel unit composition, and reach area) were selected based on their presumed 

biological significance for fluvial benthic specialist species at a local scale (e.g., 

Tangerine Darter Percina aurantiaca and Goldline Darter Percina aurolineata; Leftwich 

et al. 1997; Albanese et al. 2014). Substrate and channel unit classifications for Lee 

Creek from Gatlin (2013) were used in this analysis and applied to Blackfork Creek. 

Gatlin (2013) visually categorized channel units into four categories (i.e., riffle, run, pool, 

and glide; Arend 1999) during side-scan sonar surveys. To account for changes in river 

structure and channel unit location in the time since the surveys were conducted, 

adjustments were made to channel unit boundaries while viewing Lee Creek via Google 

Earth imagery; this procedure assumes no changes in substrate composition and no field 

validation took place. To define the stream reaches in Lee Creek, riffle-to-riffle channel 

unit polygons were merged together to create reaches (i.e., any given reach only contains 

one riffle). The side-scan sonar surveys from Gatlin (2013) were also used to classify 

substrate composition (i.e., bedrock, fine, rocky, and boulder). The four substrate types 

were consolidated into three categories. The rocky and boulder categories were merged 

into one rocky-boulder category because he reported low accuracy in differentiating these 

two types. I calculated the proportion of each reach comprised of each substrate type and 

the resulting polygons were used in the stream reach scale ENM. 
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Habitat Mapping – To map habitat throughout Blackfork Creek to match that identified 

in Lee Creek, I followed procedures employed by Gatlin (2013), using a Humminbird 

998c SI side-scan unit, in concordance with methods outlined by Kaeser and Litts (2010) 

to survey selected river segments identified as potentially suitable by the range-wide 

niche model. Because it was not feasible to completely scan Blackfork Creek, a protocol 

for side-scan sonar surveys was developed to limit sonar work to suitable areas from the 

range-wide ENM. To represent the different suitability categories (Table 4), side scan 

sonar surveys were conducted in Blackfork Creek in a disproportionate stratified 

mapping approach (Kalton and Anderson 1986). In this approach, the number of samples 

(sites per strata) is not distributed by strata size, but by suitability. Probability of habitat 

suitability was separated into five categories of increasing suitability and the amount 

scanned in each suitability category depended on the length of stream segment available. 

A 5 km threshold was selected where segments <5 km in a suitability category were 

scanned in its entirety. For areas >5 km, up to 25% of the stream segments in that 

category were scanned (Table 6).  

After the side-scan sonar surveys were conducted, the geo-referenced mosaic of 

side-scan images were processed in SonarTRX Pro and exported to ArcMap. I manually 

delineated underwater substrate types into polygon shapeflies in ArcMap 10.3.1, as 

outlined by Kaeser and Litts (2010), using field notes taken concurrently with the sonar 

surveys. Substrates were categorized into three coarse types: sand, rocky-boulder, and 

bedrock (Table 7). Geomorphic channel units (i.e., riffle, run, pool, and glide) were 

visually determined using methods outlined by Arend (1999).  
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Results	
 
Stream Segment Model - The Maxent model performed well in the range-wide model. 

High area-under-the-curve (AUC) values for testing (0.92) and training (0.98) subsets 

indicated the model accurately predicted occurrences from random background points 

(Table 8). The MTP testing omission error rate, or false negative rate, was slightly 

elevated at 0.23. Of the 63 spatially unique occurrence records, 50 were used for training 

the model and 13 for testing. Using the minimum training presence threshold (0.09), all 

12 stream segments with occurrence records in the Arkansas Valley and Ouachita 

Mountains were predicted present, although they occurred in stream segments of varying 

suitability (Figure 2). Of the 55,831 stream segments included in the range-wide model, 

95% were below the MTP and classified as not suitable for LND (Table 9; Figure 3). The 

2,763 stream segments with habitat suitability above the MTP are distributed between the 

other suitability categories and represent 3,820 km of streams. 

Unimpacted mean annual discharge was the highest contributing variable to the 

range-wide model (Table 10; Figure 4). Depth to bedrock contributed the second highest 

amount of each of the variables with a percent contribution of 8.5%. Maximum elevation 

contributed 6.9% to the model gain. The mean monthly temperature contributed 6.5%, 

lithologic type contributed 5.2%, and annual precipitation contributed 4.5% to the model. 

The range-wide model predicted several streams in Oklahoma to have high probability of 

habitat suitability that do not have LND occurrences. A 10-km threshold of suitable 

habitat was used to highlight a number of streams with “large” amounts of predicted 

habitat suitability (Table 11; Figure 5).  
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Habitat Mapping – In total, 21.7 km of Blackfork Creek was scanned using side-scan 

sonar. The areas surveyed on Blackfork Creek were comprised mostly of run channel 

units and rocky-boulder substrates with some exposed bedrock (Table 12). This contrasts 

with Lee Creek, which was comprised mostly of pool channel units and almost entirely 

rocky-boulder substrates. 

Stream Reach Model — The Maxent model performed well at the stream reach scale in 

Lee Creek, as the training and testing area-under-the-curve (AUC) values were high 

(>0.75) (Table 8; Figure 6). Of the 17 spatially unique occurrence records used in the 

model, the mean number of records used to train the model was 15.3 and the mean to test 

the model was 1.7. The MTP threshold from the logistic output from the 10-fold cross 

validation was 0.18. The mean MTP omission was 0%, while the mean MTP test 

omission rate was 10%. The jackknife measure of variable importance showed reach area 

to be the highest contributing variable in each of the model permutations with a percent 

contribution of 85.4% (Table 13; Figure 7). Percent pool composition contributed the 

second highest amount at 14.4%. Percent substrate composition contributed very little to 

the model. 

Discussion 

The stream segment scale, range-wide ENM helped identify areas within the 

known range of LND that may harbor potentially suitable habitat. Specifically, in 

Oklahoma the model highlighted several streams that have not been sampled for 

Longnose Darter (e.g., San Bois Creek and Sallisaw Creek). Also, at this scale, both of 

the streams of interest, Lee Creek and Blackfork Creek, are areas of high estimated 

habitat suitability. This offers support to the idea that a population of reintroduced LND 
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plausibly exists in a tributary of the Poteau River system after the translocation efforts in 

1991-92.  

The highest contributing variable in the stream segment ENM was unimpacted 

mean annual discharge, which is not the standard metric of measuring stream discharge. 

Unimpacted discharge is a back-calculated metric of stream discharge under conditions 

without impoundments that is included in the NHDPlus dataset. The standard metric of 

stream flows (i.e., impacted) was not used because I sought to model the broadest 

representation LNDs habitat suitability throughout its historical range. Also, because the 

occurrence records used in this model range from 1939–2014 (Table 2), impacted 

discharge may not have accurately represented the flow characteristics when these 

individuals were sampled. Because the objective of this model was to aid in the detection 

of this species, using unimpacted flows and occurrence records from both dammed and 

undammed periods results in a model that provides a liberal estimate of LND habitat 

suitability.  

The stream reach scale ENM further differentiated suitable stream reaches in Lee 

Creek and Blackfork Creek by incorporating local habitat characteristics. Stream 

segments in these systems vary widely in size and any future sampling performed at the 

reach scale will allow more thorough sampling of the selected sites. By modeling at this 

finer scale, fewer occurrences records could be assigned specific stream reach locations. 

The 17 LND occurrence records that could be assigned to specific stream reaches were 

helpful in estimating suitable habitat at the reach scale in Lee Creek and by projecting 

this model into the portions of Blackfork Creek that were mapped with side-scan sonar. 
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A shortcoming of presence-only modeling is that without the use of absence data, 

we only have information about locations where a species was detected. Because these 

models do not have information of species frequency of occurrence, they provide relative 

indices of habitat suitability (Elith et al. 2006). In fact, presence-only ENMs might only 

be modeling where a species is more likely to be detected (Lahoz-Monfort et al. 2014) 

and researchers must decide if this is useful. Given the objectives of these ENMs were to 

aid future sampling efforts that might seek to detect this species in novel locations, 

estimating sites with high probability of habitat suitability is still meaningful information. 

If locations where this species is more easily detected are also areas of suitable habitat, 

the results of the stream segment ENM can be used by fisheries management agencies 

interesting in detecting LND. 

To highlight how difficult LND can be to detect LND, the Oklahoma Water 

Resources Board captured a Longnose Darter in 2015 during routine sampling on the 

Poteau River upstream of Wister Lake, just west of the Arkansas border (OKRM-1023). 

This specimen was the first documented LND occurrence record in the PRS since Wister 

Lake was built in 1949. Like the Black Kokanee and the Robust Redhorse (Hendricks 

1998, Nakabo et al. 2011), the Longnose Darter has been rediscovered in a portion of its 

native range after decades of believed extirpation. The range-wide ENM predicted habitat 

suitability for the stream segment the LND was captured in is 0.42. After being found in 

the PRS while presumed extirpated, Longnose Darter populations could plausibly exist in 

other streams in Oklahoma that have never been targeted specifically for LND sampling. 

When using occurrence records collected from other databases we rely on the 

correct species identification. If misidentifications are made or a species known 



	
	

17	

distribution is updated, many times past occurrence records or museum inventory data are 

not updated very well with respect to taxonomy. Robison (1992) discusses LND 

occurrences from the Spring River in Missouri that were determined to be Slenderhead 

Darter. This report to the US Forest Service is not widely accessible and some databases 

still list a LND occurrence record in the Spring River.  

Similarly, a record of LND occurrence in the Kiamichi River of Oklahoma was 

determined to be a Slenderhead Darter in a genetic analysis (Robison et al. 2014), but this 

record has not been updated in online databases. There are a total of three occurrence 

records of LNDs in the Kiamichi River and a disjunct population may occur here (Holley 

and Long 2018). As Fourche Maline Creek is a tributary of the Poteau River, it may be 

possible that a remnant population of LNDs persists there after Wister Lake was built in 

1949. The other four streams (i.e., Little Lee Creek, Coal Creek, Sans Bois Creek, and 

Sallisaw Creek) are outside of the PRS and have not been sampled specifically for 

Longnose Darters.  

Both the stream segment and reach scale ENM identify suitable areas that support 

what is known about LNDs habitat preferences. Considering the results of both modeling 

scales, moderately large streams with abundant and large pool habitats appear to be 

broadly suitable. Longnose Darters have frequently been captured in low abundances 

across a broad range of local habitat types (Burns & McDonnell Engineering Company 

1989; Gatlin and Long 2011), from shallow, swift-flowing riffle habitats to deep (>2m) 

low-flow pools. Wagner et al. (1985) reported seining LND from a 1.5m deep pool. This 

range in habitat documented by the occurrence records may be because of seasonal 

changes in habitat use, which has been long suspected (Thompson 1977, Robison 1992). 
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It appears that there are two different habitat types used by LND throughout the year. In 

the spring, spawning LND move into riffle habitats near swift runs up to three feet deep 

(Robison 1992). During the non-spawning season LNDs have been found in deeper 

quieter pool regions. This behavior, coupled with limited occurrences records, could 

mean that while rarely encountered they are a habitat generalist within stream reaches 

they occupy.  

Little is known about the ecology and life history of the Longnose Darter. In 

1975, the Fishes of Missouri field guide stated, “nothing is known about the biology of 

this fish” (Pflieger et al. 1975). Since then, more information about the life history of 

LND has been discovered (Thompson 1977, Robison and Buchanan 1988), but relatively 

little is still known about this species. It has been speculated that habitat fragmentation 

and degradation from the construction of dams has contributed to LNDs decline in 

distribution in Oklahoma (Wagner et al. 1985). However, several valid reports of 

Longnose Darter from Lake Wappapello, Missouri and Lake Nimrod, Arkansas suggest 

that this species may tolerate reservoir environments at least for short periods of time 

(Robison 1992). The research presented here will hopefully add some insights to what we 

know about this rare species and will aid future management efforts to monitor their 

status. 
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CHAPTER II 
 

 

DETECTION PROBABILITIES OF LONGNOSE DARTER (PERCINA NASUTA) IN 
RELATION TO OTHER DARTERS IN LEE CREEK AND BLACKFORK CREEK OF 

OKLAHOMA  

 

Introduction 

The Longnose Darter (Bailey 1941) is a species native to upland streams in the 

Arkansas River drainage of Arkansas, Missouri, and Oklahoma (Miller and Robison 

2004). It is a benthic insectivore that inhabits swift gravel riffles and raceway areas 

during spawning season and moves into deeper pools later in the year (Thompson 1977; 

Robison 1992). Longnose Darters (LND; Percina nasuta) are listed as a state-

endangered, tier I species of conservation concern in Oklahoma (ODWC 2016) and are 

considered “threatened” throughout its entire range (Jelks et al. 2008). Currently, LND is 

one of 404 species from the southeastern United States petitioned for listing under the 

Endangered Species Act (Center for Biological Conservation 2010). However, little 

current information on LNDs exists to assist in this determination. 

Historically, Longnose Darters were only known to definitively occur in 

Oklahoma in two river systems, Lee Creek and the Poteau River system (multiple 

occurrences in the Poteau River and 1 occurrence in Brazil Creek). One of Oklahoma’s 

rarest fish species (Robison 1992; Miller and Robison 2004), the LND likely suffered
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population declines after the completion of Wister Dam in 1949. Currently, only the 

population in Lee Creek is known to consistently persist (Burns & McDonnell 

Engineering Company 1990; Gatlin and Long 2011). This species was thought extirpated 

from much of its range in Oklahoma because for 68 years not a single individual was 

reported from the Poteau River system (PRS) (Cross and Moore 1952; Lindsey et al. 

1983; Wagner et al. 1985). However, in 2015 a LND was collected from the Poteau River 

upstream of Wister Lake (OWRB 2015). This record highlights how little we know about 

Longnose Darters’ detectability when sampling. Our ability to detect this species hinders 

our ability to properly document their distribution. 

A potentially viable population of translocated LND may exist in Blackfork 

Creek, a tributary of the Poteau River. When dam construction on Lee Creek was 

proposed by the city of Fort Smith, Arkansas in 1989, concern grew that LNDs might be 

extirpated from Lee Creek. Translocation efforts in 1991-92 resulted in ~164 individuals 

moved from Lee Creek into three locations of Blackfork Creek to create a refuge 

population (Burns & McDonnell Engineering Company 1989) (Figure 1). Although 

surveys conducted prior to translocation failed to collect any LND in Blackfork Creek 

(Burns & McDonnell Engineering Company 1990), it is within the historic range of the 

species (Cross and Moore 1952). Blackfork Creek has not been surveyed for LND since 

the translocations in 1991-92 and the success of these efforts is unknown. Surveying 

Blackfork Creek in a framework where detection probability can be estimated would shed 

some light onto this unassessed population. 

Imperfect species detection is an important consideration for species of 

conservation concern (Kéry and Schmidt 2008). The dynamic nature of stream 
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environments further complicates the issues of species detection (Poff and Zimmerman 

2010). Occupancy modeling is a technique that separates the ecological process of 

species occurrence from the detection process (MacKenzie et al. 2002), allowing the 

estimation of detection probability under different environmental sampling conditions. 

Detection probability can not only vary by species, but also by habitat and sampling 

conditions (Bailey et al. 2004; Mollenhauer et al. 2018). This is why it is important to 

sample under a variety of environmental conditions to establish species-environment 

relationships (Gwinn et al. 2016). When tasked with monitoring rare species, it is 

important that we are informed about heterogeneity in detection (MacKenzie et al. 2004b, 

2005). For example, if the objective is to conduct targeted sampling surveys for a rare 

species, the study design can be adjusted to account for this difficulty (e.g., more sites, 

less surveys) (MacKenzie and Royle 2005). However, if the detection probability of a 

species is low, more surveys is the optimal choice. This creates an interesting challenge if 

a species is both rare and difficult to detect when sampling. 

Lee Creek is thought to host the last robust population of LND in Oklahoma 

(Wagner et al. 1985; Gatlin and Long 2011). Since no post-stocking surveys were 

conducted after translocating LNDs into Blackfork Creek, it is currently unknown 

whether a population has been established in this tributary of the PRS. To determine how 

much effort is required to detect LND and to investigate how detection probably varies 

by stream and season, I surveyed Lee Creek and Blackfork Creek in the summer of 2017 

and Lee Creek again in the spring of 2018. Therefore, the objective of this study was to 

sample these systems thought to contain Longnose Darter in an occupancy modeling 
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framework to estimate detection probability and make comparisons about this rare 

species in relation to other co-occurring darters. 

Methods 

Study Area 

 Lee Creek originates within the Boston Mountains ecoregion of Arkansas and 

flows into Oklahoma before turning back east towards its confluence with the Arkansas 

River (Figure 1). The geology of this region is characterized by Pennsylvanian-age 

sandstone and shale (Woods et al. 2005). Lee Creek is designated as one of Oklahoma’s 

six “scenic rivers” (OSRC 2016) and had as many as 78 historically occurring species 

(Funk 1979; FERC 1987). Longnose Darters were first documented in Lee Creek in 1884 

(Jordan and Gilbert 1886) and this stream currently hosts the last known persistent 

populations of LNDs in Oklahoma (Wagner et al. 1985; Gatlin and Long 2011).  

 Blackfork Creek is a tributary of the Poteau River within the Ouachita Mountains 

ecoregion of Oklahoma, originating in Arkansas and flowing west into Oklahoma where 

it meets the Poteau River upstream of Wister Lake (Figure 1). The geology of this region 

is distinct from other tributaries of the Poteau River because it is almost entirely 

contained within the Ouachita Mountains ecoregion, whereas the rest of the Poteau River 

system (PRS) is in the Arkansas Valley ecoregion. The geology of this region is 

characterized by low mountains comprised of folded, sandstone-capped ridges and shale 

valleys (Woods et al. 2005). Blackfork Creek is characterized by cobble, boulder, and 

bedrock substrate typical of this region (Cross and Moore 1952, Woods et al. 2005). 

Longnose Darters had never been documented in Blackfork Creek prior to the 

translocations in 1991-92 (Cross and Moore 1952, Lindsey et al. 1983), although the 
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species assemblage and water quality are similar to Lee Creek (Burns & McDonnell 

1990). However, because no follow up surveys on Blackfork Creek were conducted after 

the translocations, a LND population may persist in this tributary of the Poteau River.   

 

Site Selection 

Lee Creek and Blackfork Creek were selected as the target streams for this survey 

because they host populations of LND (Wagner et al. 1984, Gatlin and Long 2011), or 

plausibly could because of translocations (O’Donnell 1991, 1992). Stream reaches 

(hereafter referred to as sites) were selected based on the results of both the stream 

segment and stream reach scale ecological niche models (ENM) from Chapter 1. To 

conduct a targeted sampling survey of LND in Lee Creek and Blackfork Creek, only 

stream segments and stream reaches from the top two suitability categories from the 

ENMs were considered (Chapter 1; Table 4). Sixteen sites in each stream were selected 

haphazardly from reaches within the top two suitability categories of the stream reach 

ENM that lie within segments in the top two suitability categories of the stream segment 

niche model (Figure 2, Figure 3).  

 

Sampling 

To determine how much effort is required to detect LND in Lee Creek and 

Blackfork Creek, sampling was conducted in an occupancy modeling framework to 

estimate and account for imperfect species detection. Probability of detecting a species 

when it is present is almost never perfect and occupancy modeling uses species encounter 

histories over repeat surveys to estimate this probability (MacKenzie et al. 2002, 2003; 
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Gu and Swihart 2004). Varying species detection probability when sampling under 

different environmental conditions allows factors associated with detection probability to 

be determined and is an especially important consideration when investigating rare 

species (MacKenzie et al. 2005).   

All sites were sampled in an occupancy modeling framework with spatially-

replicated surveys. Spatial replication is useful because all of the repeat surveys at a site 

can be completed in a single day (Albanese et al. 2014; Mollenhauer et al. 2018). A 

summer field season (June – August) was conducted on Lee Creek and Blackfork Creek 

in 2017. Lee Creek was sampled again in the spring of 2018 (March – April), when many 

darter species are spawning in shallow, swift riffle habitats (Thompson 1977; Aadland 

1993; Brewer et al. 2006). Sites were accessed via canoe travel between both private and 

public access locations. 

 To conduct the surveys on Lee Creek and Blackfork Creek a backpack 

electrofisher was used. Backpack electrofishing has been used to capture Longnose 

Darters before (Gatlin and Long 2011) and can be used in a range of habitat types. Ten 

20-m transects (hereafter referred to as surveys) were conducted by traveling upstream in 

wadeable areas (<1 m deep) at each site with a Smith-Root ® LR-20B. The backpack 

electrofisher settings were adjusted to maintain the standard 2-5 amps of electrical output 

that is suitable in streams with moderate levels of conductivity (Rabeni et al. 2009). The 

person operating the backpack electrofisher held a fine-mesh dip net in one hand and a 

standard hoop anode pole in the other. The anode was moved in a sweeping pattern while 

traveling upstream. A technician accompanied the person operating the backpack 

electrofisher and held another fine-mesh dip net to maximize capture of stunned fish. All 
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collected fish were kept in a bucket and after being counted were returned to the water 

downstream from each survey. A single LND was collected and preserved in 70% 

ethanol for use as a voucher specimen; all other LNDs encountered were placed in a 

photo tank (Wild Fish Conservancy ®) where photos were taken of the lateral and dorsal 

surface of each individual. The LNDs were then released at the site of capture.  

Surveys were conducted in haphazardly selected areas at each site. To maintain 

independence between the spatially-replicated surveys, at least 5-m of stream width was 

maintained between adjacent surveys and 10-m of linear stream between from the end of 

any given survey to the beginning of another (Figure 2). Similar techniques have been 

applied to maintain independence of spatially-replicated surveys (Albanese et al. 2011, 

Mollenhauer et al. 2018).  

 Environmental variables were recorded after conducting each backpack 

electrofishing survey. To determine how environmental factors affected detectability 

(MacKenzie et al. 2006), survey-specific covariates were recorded during each sampling 

occasion (Table 1). The survey-specific covariates were recorded at the beginning and 

end points of each survey and averaged. Water clarity was assessed with a 120-cm Secchi 

tube (Forestry Suppliers ®) after allowing the water to settle. Water velocity was 

measured at 0.6 water depth and depth was recorded using a Global Water Flow Probe 

(model FP111) in the same locations at each survey. Proportion of cobble substrate was 

recorded using a 0.5m x 0.5m quadrat and estimates represent proportion of substrate 

within quadrat above 64-mm in size. These covariates were selected because they have 

been used to model the detection probabilities of similar species (Albanese et al. 2011, 

2014; Anderson et al. 2012; Dextrase et al. 2014) and are presumed relevant to LNDs 
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based on similar ecology (Miller and Robison 2004). To account for any spatial 

autocorrelation of surveys within sites, drainage area (km2) for each reach was used to 

account for spatial position. Drainage area was assigned as a non-temporally variant 

detection variable for each survey (NHDPlus version 2; McKay et al. 2012).  

 

Detection Probabilities 

Backpack electrofishing detection probability was quantified by using the 

occupancy modeling framework described by MacKenzie et al. (2002). Occupancy 

models utilize repeat surveys to separate the ecological process and the detection process 

(MacKenzie et al. 2006). Each of these can be modeled as a function of covariates to 

investigate how they change across sites, surveys, and environmental conditions. Because 

an objective of this study was to determine how much effort is required to detect 

Longnose Darters, I focused on the detection process. 

To compare detection probabilities of the darter communities within a season and 

between systems, multi-species detection models (MacKenzie et al. 2004a) were 

developed that included stream as a categorical variable. Banded Darter was the reference 

species used and coefficients of other darters are interpreted in relation to this species. 

Banded Darter was selected as the reference species because it was widely encountered in 

both streams. To compare detection probabilities of a darter community within a system 

and between seasons, Lee Creek was sampled in both the summer and spring field 

seasons. A set of candidate detection models for LND (N= 14) and a set of candidate 

multi-species detection models (N= 22) were developed with varying levels of 

complexity (Table 2; Table 3). Water clarity was not used in any analysis because 



	
	

27	

variation was minimal across all sites in Lee Creek and Blackfork Creek. Water depth, 

water velocity, and substrate size were included as continuous variables. Species, channel 

unit, and stream name were included as categorical variables. A Pearson’s correlation |r| 

>0.7 was used as the threshold for highly correlated variables. All continuous variables 

were natural log-transformed because of right-skewed distributions. The datasets were 

then standardized such that each continuous variable had a mean of 0 and a variance of 1. 

Species-specific detection probabilities were examined by incorporating species as a 

categorical variable and including interaction terms between species and the continuous 

covariates (see Mollenhauer et al. 2018). Detection models were fit using the package 

“unmarked” (Fiske and Chandler 2011) in the statistical software R (version 3.4.2; R. 

Core Team 2017). 

A goodness-of-fit test (MacKenzie and Bailey 2004) was applied to the most 

complex multi-species detection models (n = 300 bootstraps) and indicated that these 

models were not overdispersed (i.e., ĉ ≤ 1, Summer: ĉ = 0.99; Spring: ĉ = 0.86). Models 

were ranked using Akaike information criterion corrected for small sample size (AICc; 

Burnham and Anderson 2002). A trap response (i.e., a change in detection probability 

after the first detection) was added to the top model from each season, where a decrease 

in AICc indicates non-independence among the spatially-replicated surveys. 

 

Results 

Sampling 

In total, 2130 darters among 9 species were sampled between the two field 

seasons (Table 4). Of the 9 species encountered, all 9 were detected in Lee Creek and 7 
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species were detected in Blackfork Creek. Longnose Darter and Sunburst Darter were not 

sampled from any of the sites on Blackfork Creek. Sunburst Darter (Etheostoma 

mihileze), which was recently split from the Stippled Darter (Etheostoma punctulatum; 

Mayden 2010), is an Ozark endemic species and was not expected to be in Blackfork 

Creek. Of the 16 sites in Blackfork Creek, 3 were at the same locations as the 1991-92 

translocation sites (Figure 3). Despite 160 surveys at these 16 sites, Longnose Darters 

were not detected in Blackfork Creek (Table 5).  

Environmental sampling conditions varied between the two field seasons. In the 

summer field season, water velocity was on average lower in Blackfork Creek compared 

to Lee Creek (Table 6). The surveys conducted on Blackfork Creek also had on average 

deeper water and a larger proportion of cobble substrate. Both average water depth and 

average water velocity increased on Lee Creek in the spring compared to the summer 

field season.  

Overall, detection probabilities increased for the darters in Lee Creek in the spring 

field season compared to the summer field season (Table 7). Out of the 9 species 

encountered in Lee Creek, detection increased for 7 species. Detection probabilities 

decreased for Greenside Darter and Sunburst Darter in the spring. Longnose Darter had 

the lowest detection probability (5%) out of the co-occurring species in summer 2017. 

However, when Lee Creek was sampled again in spring 2018, the detection probability 

for LND increased to 10% (Table 7). 
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Analysis 

There were no highly correlated (|r| >0.7) detection covariates in the summer 2017 

or the spring 2018 field season (Table 8). The multi-species candidate models were 

ranked using AICc and a trap response was applied to each top model to see if this 

lowered the AICc value. In both model sets, the trap response showed an improvement 

over the top models (Table 9, 10). This indicates that the spatially-replicated samples 

were not totally independent at each site in both the summer and spring field seasons. 

The top multi-species model for the 2017 summer field season includes 

interaction effects between species and water velocity and depth, an additive relationship 

with channel unit and the trap response, and additive quadratic relationships with depth 

and velocity (Table 3). The additive quadratic effects of depth and velocity are not 

species-specific, whereas the interaction between species, depth, and velocity allow the 

slopes to vary by species. There is a positive linear relationship between detection 

probability and increasing water depth for Logperch, LND, and Sunburst Darter (Figure 

4), while holding all other variables at mean values. However, these estimates do have a 

fair amount of uncertainty around them, as Figure 5 shows for Logperch. The 95% 

confidence intervals for the other species of darters with water depth overlap with zero 

and were not plotted (Table 9). In Blackfork Creek, Logperch, Channel, Orangethroat, 

and Redfin Darters exhibit a negative relationship with increasing water velocity, while 

holding all other variables at mean values (Figure 6). Fantail Darters exhibit a slight 

positive relationship with detection probability and water velocity.  

 The top multi-species model for the spring field season that includes only Lee 

Creek is model 12 with the trap response (Table 2.) This model includes only an 
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interaction between species and quadratic water velocity plus an additive trap effect. All 

9 darter species encountered in Lee Creek in the summer were detected again in the 

spring field season. Of these, only the 95% confidence intervals around the coefficient 

estimates for Logperch, Redfin, and Sunburst Darters did not overlap zero (Table 10, 

Figure 7).  There are varying species-specific quadratic water velocity relationships, but 

these estimates also have uncertainty around them (Figure 8). Figure 7 shows Logperch, 

Redfin Darter, and Sunburst Darter and illustrates their varying species-specific 

relationships. The detection probability for these three species is highest with water 

velocities >0.8 m/s and <1.2 m/s. 

The Longnose Darter only candidate models for both field seasons were no better 

than the null model. Longnose Darters were likely not detected enough to model a 

relationship between their encounter histories and the environmental covariates. 

 

Discussion 

Longnose Darter detection probability was the lowest of all the species sampled 

during the summer field season. While no LND were encountered in Blackfork Creek, a 

detection probability of 0.05 in Lee Creek suggests likely twice the survey effort (20 

surveys) is necessary to detect a Longnose Darter given the species is present. In the 

spring field season, LND detection probability in Lee Creek increased to 0.10. Only 8 

individuals were encountered in the summer and 22 individuals were detected in the 

spring season. Future surveys for Longnose Darters in Lee Creek and in other streams 

with potentially suitable habitat should therefore be conducted in the spring to both 

increase the odds of detecting the species and to decrease the amount of resources used in 
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the field. Gatlin (2013) performed a community assemblage survey of Lee Creek, 

sampling a wide variety of habitats and locations, and detected LND at four locations. 

My targeted sampling for Longnose Darter on Lee Creek resulted in detecting Longnose 

Darters in eight different sites; LND were found at three of the four sites from Gatlin 

(2013) and at five new sites (Table 11). 

The detection probability for Sunburst Darters in Lee Creek ranged from 0.22 in 

the summer field season to 0.07 in the spring field season. Sunburst Darter (Etheostoma 

mihileze) is a species of greatest conservation need in Oklahoma (ODWC 2016). To my 

knowledge, detection probability has never been quantified for this species, or for the 

species it was recently split from, the Stippled Darter (Mayden 2010). This was one of 

only two decreases in species detection probability from summer to spring of the nine 

darter species sampled. If routine monitoring for this species should become a priority, 

knowing detection rates are higher in the summer for Sunburst Darters in Lee Creek will 

aid natural resource managers.  

The detection estimates discussed here are in relation to a backpack electrofishing 

survey. Backpack electrofishing is commonly used in streams and can be applied where a 

tow-barge is impractical (Rabeni et al. 2009). A limitation of backpack electrofishing is 

that you are limited to wadeable depths (<1m). As Longnose Darters are thought to 

occupy pool habitats in the non-spawning season (Robison 1992), using a gear that can 

sample these deeper areas may be preferred. However, because darters are benthic 

species with absent or greatly reduced air bladders (Evans and Page 2003), it can be 

difficult to sample them in these areas. Albanese et al. (2011) estimated darter detection 

probabilities using snorkel surveys, but did not include deep-slow pools. Another concern 
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is that occupancy modeling assumes there are no false species identifications. Backpack 

electrofishing allowed the handling of each LND and insured positive identification 

through use of a photo tank. However, there are only a few ways to identify a Longnose 

Darter from other similar species and there can be conflicting identifications (Holley and 

Long 2018). 

My findings add to existing knowledge about Longnose Darter and can be used in 

future sampling efforts to conserve this species because, while only two streams were 

sampled in this study, this is the first time detection probability has been quantified for 

LND. Any future targeted sampling of LNDs on Lee Creek should be conducted in the 

spring because detection rates are higher. The increased attention imperfect species 

detection has received in the literature in recent years (Kellner and Swihart 2014) is well 

deserved because it affects nearly all species (Kéry and Schmidt 2008). By accounting for 

our imperfect surveys hopefully we can improve conservation efforts for imperiled 

species like the Longnose Darter. 
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APPENDIX A: Tables for Chapter 1 
 

Table 1. Data sources for Longnose Darter occurrence records collected from online 
databases and used in the range-wide niche model.  

Data Sources Collection Dates 
Arkansas Department of Environmental Quality 1963–2014 
Cornell University Museum of Vertebrates 1951–1967 
Illinois Natural History Survey 1948 
Louisiana Museum of Natural History 1984 
Mississippi Museum of Natural Science 1992 
Tulane University Museum of Natural History 1955–1974 
University of Alabama 1991 
University of Arkansas Collections Facility 1962-1963 
University of Kansas Biodiversity Institute 1947–1973 
University of Michigan Museum of Zoology 1939–1955 
University of Texas  1972 
University of Tulsa 1962–1972 
Yale University Peabody Museum 1984–2010 

       Accessed March 2016 
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Table 2. Environmental predictor variables used in the range-wide ecological niche 
model for Longnose Darter at a stream-segment scale. 

Variable Unit Source1 Development Date 
Lithologic type Category CONUS -SOIL 1998 
Depth to bedrock cm CONUS-SOIL 1998 
Soil permeability	 cm/hr CONUS-SOIL 1998 
Rock fragment volume	 % CONUS-SOIL 1998 
Annual precipitation mm*100 NHDPlusV2 2015 
Mean monthly temperature °C*100 NHDPlusV2 2015 
Total drainage area km2 NHDPlusV2 2015 
Maximum elevation cm NHDPlusV2 2015 
Slope km/km NHDPlusV2 2015 
Unimpacted	mean annual 
discharge 

m3/s NHDPlusV2 2015 

Unimpacted	mean annual 
flow velocity 

m/s NHDPlusV2 2015 

1CONUS-SOIL = Conterminous United States Multi-Layer Soil Characteristics 
Dataset, available online http://www.soilinfo.psu.edu/index.cgi, accessed March 
2016; NHDPlusV2 = National Hydrography Dataset Version 2, available online 
https://nhd.usgs.gov/, accessed March 2016. 
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Table 3. Correlation matrix for the predictor variables used in the stream segment 
ecological niche model. Pearson’s |r| >0.7 was used as the threshold for highly correlated 
variables. 

  

Depth-
to-

bedrock 
Soil 

permeability 

Rock 
fragment 
volume 

Annual 
precipitation 

Mean 
monthly 

temperature 

Total 
drainage 

area 
Maximum 
elevation Slope 

Annual 
discharge 

Annual 
flow 

velocity 
Depth-to-bedrock 1 0.37 -0.27 -0.31 -0.34 -0.05 0.02 -0.16 -0.05 0.00 
Soil permeability 0.37 1.00 0.15 0.08 -0.05 0.03 0.05 -0.03 0.01 0.07 
Rock fragment 
volume -0.27 0.15 1.00 0.05 -0.43 -0.14 0.45 0.22 -0.12 0.07 
Annual 
precipitation -0.31 0.08 0.05 1.00 0.34 -0.02 0.09 0.26 -0.02 0.03 
Mean monthly 
temperature -0.34 -0.05 -0.43 0.34 1.00 0.06 -0.61 -0.15 0.05 -0.09 
Total drainage 
area -0.05 0.03 -0.14 -0.02 0.06 1.00 -0.09 -0.04 0.81 0.28 
Maximum 
elevation 0.02 0.05 0.45 0.09 -0.61 -0.09 1.00 0.46 -0.11 -0.01 
Slope -0.16 -0.03 0.22 0.26 -0.15 -0.04 0.46 1.00 -0.05 -0.01 

Annual discharge -0.05 0.01 -0.12 -0.02 0.05 0.81 -0.11 -0.05 1.00 0.42 
Annual flow 
velocity 0.00 0.07 0.07 0.03 -0.09 0.28 -0.01 -0.01 0.42 1.00 

 



	42	
	

Table 4. Categories of increasing probability of suitability for the Longnose Darter at the 
stream segment and stream reach-scale estimated with niche models. The minimum 
training presence (MTP) values were used as the suitability threshold for the unsuitable 
category (0) and the category of lowest suitability (1) at each scale. Categories 1–4 
represent suitability categories above the MTP. 

Maxent Output Values 
Suitability 
Category 

 Segment Reach 
0 0.00 – 0.09 0.00 – 0.18 
1 0.09 – 0.20 0.18 – 0.20 
2 0.20 – 0.50 0.20 – 0.50 
3 0.50 – 0.80 0.50 – 0.71 
4 0.80 – 1.00  
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Table 5. Correlation matrix for the predictor variables used in the stream reach ecological 
niche model. Pearson’s |r| >0.7 was used as the threshold for highly correlated variables.	

  
Reach 
Area 

% 
Riffle 

% 
Run 

% 
Glide 

% 
Pool 

% Rocky-
boulder 

% 
Bedrock % Fine 

Reach Area 1.00 -0.48 -0.39 -0.17 0.60 -0.39 0.39 0.36 
% Riffle -0.48 1.00 0.38 -0.18 -0.73 0.22 -0.22 -0.11 
% Run -0.39 0.38 1.00 -0.24 -0.83 0.19 -0.19 -0.08 
% Glide -0.17 -0.18 -0.24 1.00 -0.07 0.19 -0.19 -0.03 
% Pool 0.60 -0.73 -0.83 -0.07 1.00 -0.32 0.32 0.13 
% Rocky-boulder -0.39 0.22 0.19 0.19 -0.32 1.00 -1.00 -0.03 
% Bedrock 0.39 -0.22 -0.19 -0.19 0.32 -1.00 1.00 0.03 
% Fine 0.36 -0.11 -0.08 -0.03 0.13 -0.03 0.03 1.00 
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Table 6. An example of the disproportionate stratified mapping approach applied to the 
Poteau River system, shown for Blackfork Creek. 

Stream 
Suitability 
Category 

Length 
(km) 

Above 5 km 
Threshold 

Proposed 
Length (km) 

%  
Mapped 

Blackfork Creek 0 0.0 No 0.0 0 
Blackfork Creek 1 8.1 Yes 2.0 25 
Blackfork Creek 2 4.0 No 4.0 100 
Blackfork Creek 3 1.4 No 1.4 100 
Blackfork Creek 4 35.1 Yes 8.8 25 
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Table 7.	Classification scheme and descriptions used to categorize substrate types from 
side-scan sonar images in the Poteau River system of Oklahoma; adapted from Kaeser 
and Litts (2010) and Gatlin (2013). 

 
Class Description 

Fine >75% of area composed of particles < 2-mm diameter (sand, silt, clay, or 
fine organic detritus) 

Rocky-
boulder 

>75% of area comprised of rocks > 64-mm diameter with scattered 
boulders > 500-mm (gravel or cobble) 

Bedrock >75% of area comprised of large, smooth sheets of exposed bedrock or 
outcropping 
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Table 8. Maxent model outputs for the stream segment and stream reach scale Longnose 
Darter ecological niche models.  

	 	 	Metric Stream 
Segment 

Stream 
Reach 

Training samples 50 15.3 
Testing samples 13 1.7 
Training AUC 0.98 0.79 
Testing AUC 0.92 0.77 

MTP logistic threshold 0.09 0.18 

MTP training omission 0.00 0.00 

MTP test omission 0.23 0.10 



	47	
	

Table 9. Number of stream segments and total stream length within the suitability 
categories from the range-wide ecological niche model of Longnose Darter. 
 

Suitability 
Category 

Stream 
Segments 

Total Stream 
Length (km) 

0 53068 94084.2 
1 1012 1463.4 
2 984 1444.9 
3 717 840.6 
4 50 71.0 

Total 55831 97904.1 
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Table 10. Environmental variable contribution to model accuracy gain for the range-
wide, stream segment scale ecological niche model. 

 

Variable Percent 
Contribution 

Unimpacted Mean Annual 
Discharge 68.4 

Depth to Bedrock 8.5 
Maximum Elevation 6.9 
Mean Monthly Temperature 6.5 
Lithologic Type 5.2 
Annual Precipitation 4.5 
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Table 11. Streams in Oklahoma with at least 10 km of potentially suitable habitat in the 
suitability categories for Longnose Darter based on the stream segment scale, range-wide 
ecological niche model. 
 

    
Length (km) in Habitat Suitability 

Category 

Ecoregion Stream 1 2 3 Total Length 
Arkansas Valley Canadian River 2.8 5.6 2.0 10.5 
Arkansas Valley Coal Creek 10.3 1.7 0.0 12.0 
Arkansas Valley Fourche Maline 22.9 0.7 0.0 23.6 
Arkansas Valley Poteau River 8.4 3.8 3.8 16.0 
Arkansas Valley Sans Bois Creek 7.8 13.1 0.0 20.9 
Boston Mountains Lee Creek 0.0 12.3 14.2 26.4 
Boston Mountains Little Lee Creek 5.2 18.7 0.0 24.0 
Boston Mountains Sallisaw Creek 0.0 11.2 2.2 13.4 
Ouachita Mountains Big Eagle Creek 7.0 10.0 0.0 16.9 
Ouachita Mountains Blackfork Creek 0.0 11.9 0.0 11.9 
Ouachita Mountains Buffalo Creek 9.0 37.6 0.0 46.6 
Ouachita Mountains Glover River 9.3 6.6 0.0 15.9 
Ouachita Mountains Jackfork Creek 3.1 11.5 2.1 16.7 
Ouachita Mountains Mountain Fork 5.5 31.0 7.9 44.3 
Ouachita Mountains West Fork Glover River 14.1 0.0 0.0 14.1 
Ozark Highlands Baron Fork 44.1 0.6 0.0 44.7 
Ozark Highlands Flint Creek 0.0 9.1 1.4 10.5 
Ozark Highlands Illinois River 68.1 4.8 17.5 90.4 
Ozark Highlands Spavinaw Creek 19.7 3.7 4.0 27.4 
Ozark Highlands Spring Creek 11.1 0.0 0.0 11.1 
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Table 12. A comparison of Lee Creek and Blackfork Creek using results of side-scan 
sonar surveys. The Lee Creek summaries come from Gatlin’s (2013) surveys. 
 

Variable Lee Creek 
Blackfork 

Creek 
Reach Area (m2) 11789 15000 

% Glide 9.7 4.2 

% Pool 47.2 26.7 

% Riffle 21.2 26.7 

% Run 21.8 42.3 
% Rocky-
boulder 96.8 73.6 

% Bedrock 3.2 22.5 

% Fine 0 3.7 
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Table 13. Environmental variable contribution to model accuracy gain for the stream 
reach scale ecological niche model in Lee Creek, Oklahoma. 
 

Variable Percent 
Contribution 

Reach Area 85.4 

% Pool Channel Unit 14.4 

% Bedrock Substrate 0.2 

% Glide Channel Unit 0.0 
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APPENDIX B: Figures for Chapter 1 
 

 

Figure 1. Map of Lee Creek and the Poteau River system in eastern Oklahoma and western 
Arkansas shown with ecoregions and Longnose Darter translocation sites in Blackfork Creek. 
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Figure 2. Map of the occurrence records used in the range-wide ecological niche model 
and the estimated probability of habitat suitability for stream segments in the study area 
above the minimum training presence threshold (Table 4).  
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Figure 3. The Poteau River system and Lee Creek shown with outputs from the range-
wide niche model for the Longnose Darter in categories of increasing probability of 
habitat suitability (Table 4). 
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Figure 4. Environmental variable response curve for unimpacted mean annual discharge, 
the highest contributing variable from the stream segment scale, range-wide ecological 
niche model. 
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Figure 5. Streams in Oklahoma with >10 km of high probability of habitat suitability for 
Longnose Darter from the stream segment, range-wide ecological niche model (Table 
11). 
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Figure 6. Lee Creek shown with outputs from the reach scale niche model for Longnose 
Darter in categories of increasing probability of habitat suitability (see Table 4), shown 
with Longnose Darter occurrences that were used to train the model (N = 17). 
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Figure 7. Environmental variable response curves from the stream reach scale ecological 
niche model. Panel A shows the response curve for the continuous variable Reach Area 
(m2) and panel B shows the response curve for the continuous variable % Pool.

A 

B 
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APPENDIX C: Tables for Chapter 2 

Table 1. Environmental covariates used to estimate detection probability, shown with 
metrics and methods of calculation or measurement. 

          Covariate Method 
Water Clarity (m) Secchi tube, 120-cm 

Water Velocity (m/sec) Measured at 0.6 depth at endpoints of surveys 

Depth (m) Measured at endpoints of surveys 

Proportion of cobble 
substrate 

Proportion of 0.5m x 0.5m quadrat comprised of cobble 
substrate (>64-mm) at endpoints of surveys 
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Table 2. List of candidate models (n=22) for the spring 2018 multi-species detection 
models of nine darter species in Lee Creek, Oklahoma. Ψ is occupancy, p is detection 
probability, K is the number of parameters in the model. “da” is for drainage area. * 
denotes the top model. 

# Model K AICc 
null Ψ(~1),p(~1) 2 1214.099 
 1 Ψ(da),p(species) 11 1090.961 
 2 Ψ(da),p(species + depth + depth2) 13 1083.041 
 3 Ψ(da),p(species + velocity + velocity2) 13 1056.949 
 4 Ψ(da),p(species + substrate) 25 1090.776 
 5 Ψ(da),p(species + channel unit) 14 1065.130 
 6 Ψ(da),p(species + depth + depth2 + velocity + velocity2) 15 1054.993 
 7 Ψ(da),p(species + depth + depth2 + velocity + velocity2 + substrate + channel unit) 19 1039.521 
 8 Ψ(da),p(species*depth + depth2) 21 1085.358 
 9 Ψ(da),p(species*velocity + velocity2) 21 1035.223 
 10 Ψ(da),p(species*substrate) 20 1069.656 
 11 Ψ(da),p(species*(depth + depth2)) 29 1098.961 
12 Ψ(da),p(species*(velocity + velocity2)) 29 1020.691 

*12_trap Ψ(da),p(species*(velocity + velocity2) + trap) 30 1016.326 
 13 Ψ(da),p(species*(depth + depth2 + substrate)) 38 1081.465 
 14 Ψ(da),p(species*(velocity + velocity2 + substrate)) 38 1026.398 
 15 Ψ(da),p(species*(depth + velocity) + depth2 + velocity2) 31 1046.730 
 16 Ψ(da),p(species*(depth + velocity) + depth2 + velocity2 + channel unit) 34 1052.067 
 17 Ψ(da),p(species*(depth + depth2 + velocity + velocity2)) 47 1074.326 
 18 Ψ(da),p(species*(depth + velocity + substrate) + depth2 + velocity2 + channel unit) 43 1061.349 
 19 Ψ(da),p(species*(depth + depth2 + velocity + velocity2) + channel unit) 50 1087.231 
 20 Ψ(da),p(species*(depth + depth2 + velocity + velocity2 + substrate)) 56 1103.298 
 21 Ψ(da),p(species*(depth + depth2 + velocity + velocity2 + substrate) + channel unit 59 1126.567 
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Table 3. List of candidate models (n=22) for the summer 2017 multi-species detection 
models of nine darter species in Lee Creek and Blackfork Creek, Oklahoma. Ψ is 
occupancy, p is detection probability, K is the number of parameters in the model. “da” is 
for drainage area. * denotes the top model. 

# Model K AICc 
null Ψ(~1),p(~1) 2 2574.026 
 1 Ψ(stream + da),p(species) 12 2440.464 
 2 Ψ(stream + da),p(species + depth + depth2) 14 2380.080 
 3 Ψ(stream + da),p(species + velocity + velocity2) 14 2385.137 
 4 Ψ(stream + da),p(species + substrate) 13 2437.276 
 5 Ψ(stream + da),p(species + channel unit) 15 2367.637 
 6 Ψ(stream + da),p(species + depth + depth2 + velocity + velocity2) 16 2370.496 

 7 
Ψ(stream + da),p(species + depth + depth2 + velocity + velocity2 + 
substrate + channel unit) 20 2360.546 

 8 Ψ(stream + da),p(species*depth + depth2) 22 2308.660 
 9 Ψ(stream + da),p(species*velocity + velocity2) 22 2286.232 
 10 Ψ(stream + da),p(species*substrate) 21 2435.144 
 11 Ψ(stream + da),p(species*(depth + depth2)) 30 2320.952 
 12 Ψ(stream + da),p(species*(velocity + velocity2)) 30 2284.216 
 13 Ψ(stream + da),p(species*(depth + depth2 + substrate)) 39 2307.551 
 14 Ψ(stream + da),p(species*(velocity + velocity2 + substrate)) 39 2285.108 
 15 Ψ(stream + da),p(species*(depth + velocity) + depth2 + velocity2) 32 2255.935 

 16 
Ψ(stream + da),p(species*(depth + velocity) + depth2 + velocity2 + 
channel unit) 35 2244.591 

*16_trap 
Ψ(stream + da),p(species*(depth + velocity) + depth2 + velocity2 + 
channel unit + trap) 36 2235.262 

 17 Ψ(stream + da),p(species*(depth + depth2 + velocity + velocity2)) 48 2273.172 

 18 
Ψ(stream + da),p(species*(depth + velocity + substrate) + depth2 + 
velocity2 + channel unit) 44 2245.685 

 19 
Ψ(stream + da),p(species*(depth + depth2 + velocity + velocity2) + 
channel unit) 51 2262.708 

 20 
Ψ(stream + da),p(species*(depth + depth2 + velocity + velocity2 + 
substrate)) 57 2275.278 

 21 
Ψ(stream + da),p(species*(depth + depth2 + velocity + velocity2 + 
substrate) + channel unit 60 2268.949 
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Table 4. Sampling catch summary for nine species of darters from Lee Creek and 
Blackfork Creek in Oklahoma from the summer 2017 and spring 2018 field seasons. 

Scientific Name Common Name 

Blackfork 
Creek 

(Summer '17) 
Lee Creek 

(Summer '17) 
Lee Creek 

(Spring '18) 
Etheostoma blennioides Greenside Darter 155 113 45 
Etheostoma flabellare Fantail Darter 247 213 154 
Etheostoma mihileze Sunburst Darter 0 29 19 
Etheostoma spectabile Orangethroat Darter 54 139 173 
Etheostoma whipplei Redfin Darter 101 66 68 
Etheostoma zonale Banded Darter 48 172 196 
Percina caprodes Logperch 21 18 26 
Percina copelandi Channel Darter 13 3 27 
Percina nasuta Longnose Darter 0 8 22 

 
Total 639 761 730 
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Table 5.  A summary of the number of sites and surveys each darter species was detected 
in by season and stream.  

Season Stream Species 
Sites w/ 
detection 

Surveys w/ 
detection 

Summer Blackfork Creek Banded Darter 13/16 31/160 
Summer Blackfork Creek Channel Darter 8/16 13/160 
Summer Blackfork Creek Fantail Darter 16/16 70/160 
Summer Blackfork Creek Greenside Darter 16/16 73/160 
Summer Blackfork Creek Logperch 9/16 18/160 
Summer Blackfork Creek Orangethroat Darter 13/16 35/160 
Summer Blackfork Creek Redfin Darter 16/16 63/160 
Summer Lee Creek Banded Darter 15/15 67/143 
Summer Lee Creek Channel Darter 2/15 2/143 
Summer Lee Creek Fantail Darter 13/15 42/143 
Summer Lee Creek Greenside Darter 15/15 50/143 
Summer Lee Creek Logperch 7/15 11/143 
Summer Lee Creek Longnose Darter 4/15 5/143 
Summer Lee Creek Orangethroat Darter 15/15 60/143 
Summer Lee Creek Redfin Darter 14/15 45/143 
Summer Lee Creek Sunburst Darter 8/15 19/143 
Spring Lee Creek Banded Darter 12/12 73/116 
Spring Lee Creek Channel Darter 5/12 12/116 
Spring Lee Creek Fantail Darter 12/12 57/116 
Spring Lee Creek Greenside Darter 10/12 33/116 
Spring Lee Creek Logperch 7/12 15/116 
Spring Lee Creek Longnose Darter 8/12 12/116 
Spring Lee Creek Orangethroat Darter 12/12 68/116 
Spring Lee Creek Redfin Darter 12/12 45/116 
Spring Lee Creek Sunburst Darter 7/12 8/116 
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Table 6. Summary statistics for the detection covariates during the summer 2017 field 
season in Lee Creek and Blackfork Creek and the spring 2018 field season in Lee Creek. 

Season Stream Parameter Mean SD Range 

Summer 
2017 Lee Creek 

Water Depth (cm) 35.07 14.45 7.5 - 82 
Water Velocity (m/s) 0.23 0.26 0.0 - 1.25 
Proportion of cobble 
substrate (% >64 mm) 

58.02 23.56 0 - 100 

Summer 
2017 

Blackfork 
Creek 

Water Depth (cm) 42.79 15.67 11- 83.5 

Water Velocity (m/s) 0.10 0.17 0 - 0.9 
Proportion of cobble 
substrate (% >64 mm) 

68.60 19.25 10 - 100 

Spring    
2018 Lee Creek 

Water Depth (cm) 38.35 15.36 11.5 - 87 

Water Velocity (m/s) 0.35 0.31 0.0 - 1.50 
Proportion of cobble 
substrate (% >64 mm) 

49.27 21.17 0 - 100 
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Table 7. Comparison of null detection probabilities estimates for nine species of darter 
from Lee Creek and Blackfork Creek between seasons. p is detection probability. n is the 
number of individuals detected. 

  Summer 2017 Spring 2018 
% Change 

(Summer - Spring) Species 
        
p n p n 

Greenside Darter 0.41 268 0.34 45 -17 
Fantail Darter 0.38 460 0.49 154 29 
Redfin Darter 0.36 167 0.39 68 8 
Banded Darter 0.35 220 0.63 196 80 
Orangethroat Darter 0.31 193 0.59 173 90 
Sunburst Darter 0.22 29 0.07 19 -68 
Logperch 0.14 39 0.19 26 36 
Channel Darter 0.10 16 0.22 27 120 
Longnose Darter 0.05 8 0.10 22 100 
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Table 8. Correlation matrix for the continuous variables used in the candidate detection 
probability models. A threshold of Pearson’s |r| >0.7 was used for highly correlated 
variables. 

Season   
Average water 

velocity 
Average water 

depth 
Average proportion 

cobble substrate 

Summer 2017 

Average water velocity 1.00 -0.66 -0.34 
Average water depth -0.66 1.00 0.20 
Average proportion 
cobble substrate 

-0.34 0.20 1.00 

Spring 2018 

Average water velocity 1.00 -0.43 -0.22 
Average water depth -0.43 1.00 0.21 
Average proportion 
cobble substrate 

-0.22 0.21 1.00 
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Table 9. Model summary showing coefficients, standard error (SE) and 95% confidence 
intervals (CI) from the top model for the nine darter species in Blackfork Creek and Lee 
Creek in the summer of 2017. 

Parameter 
Coefficient 

± SE 95% CI 
Intercept -0.58 ± 0.29 -1.15, -0.01 
Water Depth -0.38 ± 0.17 -0.71, -0.05 
Water Velocity 0.79 ± 0.20 0.40, 1.18 
Water Depth2 -0.09 ± 0.05 -0.19, 0.01 
Water Velocity2 -0.06 ± 0.16 -0.37, 0.25 
Pool CU -0.81 ± 0.24 -1.28, -0.34 
Riffle CU 0.10 ± 0.24 -0.37, 0.57 
Run CU -0.42 ± 0.2 -0.81, -0.03 
Trap 0.42 ± 0.12 0.18, 0.66 
Channel Darter -2.05 ± 0.37 -2.78, -1.32 
Fantail Darter 0.37 ± 0.22 -0.06, 0.80 
Greenside Darter 0.53 ± 0.21 0.12, 0.94 
Logperch -1.36 ± 0.30 -1.95, -0.77 
Longnose Darter -2.81 ± 0.74 -4.26, -1.36 
Orangethroat Darter 0.26 ± 0.22 -0.17, 0.69 
Redfin Darter 0.44 ± 0.21 0.03, 0.85 
Sunburst Darter -0.81 ± 0.33 -1.46, -0.16 
Channel Darter, depth 0.84 ± 0.44 -0.02, 1.70 
Fantail Darter, depth -0.42 ± 0.24 -0.89, 0.05 
Greenside Darter, depth 0.19 ± 0.22 -0.24, 0.62 
Logperch, depth 0.74 ± 0.34 0.07, 1.41 
Longnose Darter, depth 1.75 ± 0.77 0.24, 3.26 
Orangethroat Darter, depth -0.20 ± 0.23 -0.65, 0.25 
Redfin Darter, depth 0.03 ± 0.22 -0.40, 0.46 
Sunburst Darter, depth 0.68 ± 0.34 0.01, 1.35 
Channel Darter, velocity -1.43 ± 0.39 -2.19, -0.67 
Fantail Darter, velocity -0.61 ± 0.25 -1.10, -0.12 
Greenside Darter, velocity -0.36 ± 0.25 -0.85, 0.13 
Logperch, velocity -1.57 ± 0.32 -2.20, -0.94 
Longnose Darter, velocity -1.03 ± 0.52 -2.05, -0.01 
Orangethroat Darter, velocity -1.19 ± 0.25 -1.68, -0.70 
Redfin Darter, velocity -1.31 ± 0.24 -1.78, -0.84 
Sunburst Darter, velocity -1.23 ± 0.34 -1.90, -0.56 
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Table 10. Model summary showing coefficients, standard error (SE) and 95% confidence 
intervals (CI) from the top model for the nine darter species in Lee Creek in the spring of 
2018.  

Parameter Coefficient ± SE 95% CI 
Intercept -0.29 ± 0.41 -1.09, 0.51 
Water Velocity 1.95 ± 0.67 0.64, 3.26 
Water Velocity2 0.61 ± 0.39 -0.15, 1.37 
Trap 0.52 ± 0.18 0.17, 0.87 
Channel Darter -1.49 ± 0.74 -2.94, -0.04 
Fantail Darter -1.83 ± 0.66 -3.12, -0.54 
Greenside Darter -1.87 ± 0.65 -3.14, -0.60 
Logperch -0.66 ± 0.61 -1.86, 0.54 
Longnose Darter -1.61 ± 0.69 -2.96, -0.26 
Orangethroat Darter 0.47 ± 0.55 -0.61, 1.55 
Redfin Darter 0.07 ± 0.55 -1.01, 1.15 
Sunburst Darter -1.24 ± 0.68 -2.57, 0.09 
Channel Darter, velocity 0.17 ± 3.20 -6.10, 6.44 
Fantail Darter, velocity 2.35 ± 1.13 0.14, 4.56 
Greenside Darter, velocity 0.13 ± 0.96 -1.75, 2.01 
Logperch, velocity -4.35 ± 1.17 -6.64, -2.06 
Longnose Darter, velocity -2.25 ± 1.10 -4.41, -0.09 
Orangethroat Darter, velocity -1.56 ± 0.88 -3.28, 0.16 
Redfin Darter, velocity -2.72 ± 0.89 -4.46, -0.98 
Sunburst Darter, velocity -4.35 ± 1.39 -7.07, -1.63 
Channel Darter, velocity2 -5.57 ± 4.40 -14.19, 3.05 
Fantail Darter, velocity2 1.16 ± 0.66 -0.13, 2.45 
Greenside Darter, velocity2 0.32 ± 0.57 -0.80, 1.44 
Logperch, velocity2 -1.87 ± 0.65 -3.14, -0.60 
Longnose Darter, velocity2 -0.98 ± 0.65 -2.25, 0.29 
Orangethroat Darter, velocity2 -0.71 ± 0.51 -1.71, 0.29 
Redfin Darter, velocity2 -1.03 ± 0.51 -2.03, -0.03 
Sunburst Darter, velocity2 -2.02 ± 0.76 -3.51, -0.53 
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Table 11. Coordinates of Longnose Darters detected while sampling Lee Creek in the 
summer and spring field seasons. 

Season Stream Latitude Longitude 
Summer Lee Creek 35.587703 -94.489627 
Summer Lee Creek 35.570027 -94.529561 
Summer Lee Creek 35.532428 -94.493939 
Summer Lee Creek 35.522764 -94.474328 
Spring Lee Creek 35.612079 -94.487881 
Spring Lee Creek 35.590276 -94.484929 
Spring Lee Creek 35.576803 -94.526946 
Spring Lee Creek 35.561575 -94.532158 
Spring Lee Creek 35.532428 -94.493939 
Spring Lee Creek 35.529938 -94.493869 
Spring Lee Creek 35.519613 -94.482183 
Spring Lee Creek 35.522764 -94.474328 
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APPENDIX D: Figures for Chapter 2 

Figure 1. Map of Lee Creek and the Poteau River system in eastern Oklahoma and western 
Arkansas shown with ecoregions and Longnose Darter translocation sites in Blackfork Creek. 
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Figure 2. Sampling sites (16 stream reaches) in Lee Creek in Oklahoma shown with 
example surveys. 
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Figure 3. Sampling sites (16 stream reaches) in Blackfork Creek in Oklahoma shown 
with 1991-92 Longnose Darter translocation sites.
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Figure 4. Detection probabilities by water depth for Logperch, Longnose Darter, and 
Sunburst Darter from the top model in the summer 2017 field season. The y-axis is scaled 
to 0.5 detection probability.
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Figure 5. Detection probabilities by water for Logperch from the top model in the 
summer 2017 field season. Dashed lines represent the 95% confidence interval. The y-
axis is scaled to 0.5 detection probability.
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Figure 6. Detection probabilities by water velocity for the darter community in Blackfork 
Creek from the top model in the summer 2017 field season.
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Figure 7. Detection probabilities by water velocity for Logperch, Redfin Darter, and 
Sunburst Darter in Lee Creek, OK from the top model of the spring 2018 field season. 
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Figure 8. Detection probability by water velocity for Logperch in Lee Creek, OK from 
the top model of the spring 2018 field season. Dashed lines represent the 95% confidence 
interval.	
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